DM559/DM545 Linear and Integer Programming

Introduction to Linear Programming Notation and Modeling

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Organization Introduction

Outline

1. Course Organization

2. Introduction
Resource Allocation
Duality

Who is here?

DM559 (7.5 ECTS)

66 officially registered 53 handed in 0.1

 Computer Science (2nd year, 4th semester)

Prerequisites

Programming

DM545 (5 ECTS)

28 officially registered

- Math-economy (3rd year ?)
- Applied Mathematics (2nd year?)
- Others?

Prerequisites

- Programming
- Linear Algebra (MM505)

Course Organization Introduction

Outline

1. Course Organization

Introduction
 Resource Allocation
 Duality

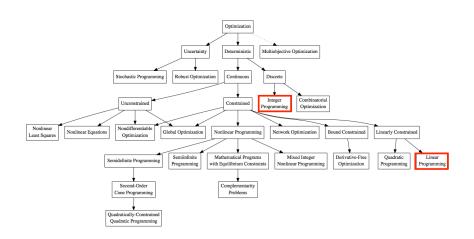
Aims of the course

Learn about mathematical optimization:

- linear programming (continuous optimization)
- integer programming (discrete optimization)

 \leadsto You will apply the tools learned to solve real life problems using computer software

Optimization Taxonomy



Contents of the Course

(see Syllabus)

Linear Programming

- 1 Introduction Linear Programming, Notation & Modeling
- 2 Linear Programming, Simplex Method
- 3 Exception Handling
- 4 Duality Theory
- 5 Sensitivity
- 6 Revised Simplex Method

Integer Linear Programming

- 7 Modeling Examples, Good Formulations, Relaxations
- 8 Well Solved Problems
- 9 Network Optimization Models (Max Flow, Min cost flow, Matching)
- 10 Cutting Planes & Branch and Bound
- 11 More on Modeling

Practical Information

```
Teacher: Marco Chiarandini (www.imada.sdu.dk/~marco/)
Instructor: Jens Østergaard
Sections (hold): H1, H2, M1
```

Alternative views of the schedule:

- mitsdu.sdu.dk, SDU Mobile
- Official course description (læserplanen)
- http://www.imada.sdu.dk/~marco/DM545

Schedule:

- Introductory classes: \sim 28 hours (\sim 14 classes)
- ullet Training classes: \sim 24 hours (\sim 12 classes)
 - Exercises: 20 hours
 - Laboratory: 4 hours (2 classes, week 13 and 17)

Communication Means

- BlackBoard (BB)
 ⇔ Main Web Page (WP)
 (link http://www.imada.sdu.dk/~marco/DM545)
- Announcements in BlackBoard
- Write to Marco (marco@imada.sdu.dk) and to instructor
- Ask peers
- You are welcome to visit me in my office in working hours (8-16)

- → It is good to ask questions!!
- → Let me know if you think we should do things differently!

Sources

Linear Programming:

- LN Lecture Notes (continously updated)
- MG J. Matousek and B. Gartner. Understanding and Using Linear Programming. Springer Berlin Heidelberg, 2007

Integer Programming:

LN Lecture Notes (continously updated)

Wo L.A. Wolsey. Integer programming. John Wiley & Sons, New York, USA, 1998

Other books and articles:

HL Frederick S Hillier and Gerald J Lieberman, Introduction to Operations Research, 9th edition, 2010

... see webpage

Course Material

Main Web Page (WP) is the main reference for list of contents (ie¹, syllabus, pensum).

It contains:

- slides
- list of topics and references
- exercises
- links
- resources for programming tasks

¹ie = id est, eg = exempli gratia, wrt = with respect to

Assessment

Accomplishment of the following is required for 5 ECTS:

- Three obligatory Assignments, pass/fail, evaluation by teacher
 - modeling + describing + programming in Python with Gurobi
 - (language: Danish and/or English)
 - individual

Deadlines:

- March 24
- April 26
- May 25
- 4 hour written exam, 7-grade scale, external censor
 - similar to exercises in class and past exams
 - on June 13

Training Sessions

- Prepare the starred exercises in advance to get out the most
- Try the others after the session
- Best if carried out in small groups
- Exercises are examples of exam questions (but not only!)

Concepts from Linear Algebra

Linear Algebra:

manipulation of matrices and vectors with some theoretical background

Linear Algebra

Matrices and vectors - Matrix algebra

Inner (dot) product

Geometric insight

Systems of Linear Equations - Row echelon form, Gaussian elimination

Matrix inversion and determinants

Rank and linear dependency

DM545 has an obligatory assignment on this.

Coding

- gives you the ability to create new and useful artifacts with just your mind and your fingers,
- allows you to have more control of your world as more and more of it becomes digital,
- is just fun.

It can also help you understand math.

Being able to turn procedural ideas into code and run the code on concrete examples give you a great advantage in developing and reinforcing your understanding of mathematical concepts.

Beside:

- listening to lectures
- watching an instructor work through a derivation
- · working through numerical examples by hand

You can learn by doing interacting with Python.

from Coding the Matrix by Philip Klein

- ullet Python 2.7 (import from __future__) + Gurobi (100 000 Dkk)
- ipython, jupyter (= interactive python)?

Attendance

- Come to classes and exercise sessions.
 - You learn how to reason about topics from this field
- Use computers in class only for course related purposes
- Note that research shows: taking notes by hand yields better long-term comprehension

http://www.psychologicalscience.org/index.php/news/releases/

 ${\tt take-notes-by-hand-for-better-long-term-comprehension.}$

html

• However: the exam is digital!

Jørn Villumsen. Politiken

Course Organization Introduction

Outline

1. Course Organization

2. Introduction

Resource Allocation Duality

What is Operations Research?

Operations Research (aka, Management Science, Analytics): is the discipline that uses a **scientific approach to decision making**.

It seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources, by means of **mathematics** and **computer science**.

Quantitative methods for planning and analysis.

It encompasses a wide range of problem-solving techniques and methods applied in the pursuit of improved decision-making and efficiency:

- simulation,
- mathematical optimization,
- queueing theory and other stochastic-process models,
- Markov decision processes

- econometric methods.
- data envelopment analysis,
- neural networks,
- expert systems

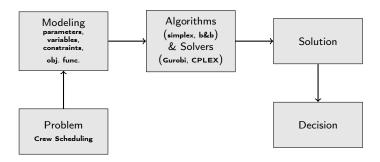
Some Examples ...

- Production Planning and Inventory Control
- Budget Investment
- Blending and Refining
- Manpower Planning
 - Crew Rostering (airline crew, rail crew, nurses)
- Packing Problems
 - Knapsack Problem
- Cutting Problems
 - Cutting Stock Problem
- Routing
 - Vehicle Routing Problem (trucks, planes, trains ...)
- Locational Decisions
 - Facility Location
- Scheduling/Timetabling
 - Examination timetabling/ train timetabling
- + many more

Common Characteristics

- Planning decisions must be made
- The problems relate to quantitative issues
 - Fewest number of people
 - Shortest route
- Not all plans are feasible there are constraining rules
 - Limited amount of available resources
- It can be extremely difficult to figure out what to do

OR - The Process?



- 1. Observe the System
- 2. Formulate the Problem
- 3. Formulate Mathematical Model
- 4. Verify Model
- 5. Select Alternative
- 6. Show Results to Company
- 7. Implementation

Central Idea

Build a mathematical model describing exactly what one wants, and what the "rules of the game" are. However,

what is a mathematical model and how?

Mathematical Modeling

- Find out exactly what the decision maker needs to know:
 - which investment?
 - which product mix?
 - which job *j* should a person *i* do?
- Define Decision Variables of suitable type (continuous, integer, binary) corresponding to the needs
- Formulate Objective Function computing the benefit/cost
- Formulate mathematical Constraints indicating the interplay between the different variables.

Course Organization Introduction

Outline

1. Course Organization

2. Introduction
Resource Allocation
Duality

Resource Allocation

In manufacturing industry, factory planning: find the best product mix.

Example

A factory makes two products standard and deluxe.

A unit of standard gives a profit of 6k Dkk.

A unit of deluxe gives a profit of 8k Dkk.

The grinding and polishing times in terms of hours per week for a unit of each type of product are given below:

	Standard	Deluxe	
(Machine 1) Grinding	5	10	
(Machine 2) Polishing	4	4	

Grinding capacity: 60 hours per week Polishing capacity: 40 hours per week

Q: How much of each product, standard and deluxe, should we produce to maximize the profit?

Mathematical Model

Decision Variables

 $x_1 \ge 0$ units of product standard $x_2 \ge 0$ units of product deluxe

Object Function

 $\max 6x_1 + 8x_2$ maximize profit

Constraints

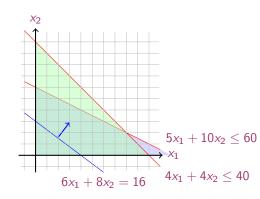
 $5x_1 + 10x_2 \le 60$ Grinding capacity $4x_1 + 4x_2 \le 40$ Polishing capacity

Mathematical Model

Machines/Materials A and B Products 1 and 2

$$\begin{array}{c|ccccc}
a_{ij} & 1 & 2 & b_i \\
A & 5 & 10 & 60 \\
B & 4 & 4 & 40 \\
\hline
c_i & 6 & 8
\end{array}$$

Graphical Representation:



Resource Allocation - General Model

Managing a production facility

```
\begin{array}{ll} j=1,2,\ldots,n & \text{products} \\ i=1,2,\ldots,m & \text{materials} \\ b_i & \text{units of raw material at disposal} \\ a_{ij} & \text{units of raw material } i \text{ to produce one unit of product } j \\ \sigma_j & \text{market price of unit of } j \text{th product} \\ \rho_i & \text{prevailing market value for material } i \\ c_j = \sigma_j - \sum_{i=1}^m \rho_i a_{ij} & \text{profit per unit of product } j \end{array}
```

 x_i amount of product j to produce

Notation

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, i = 1, \dots, m$$

$$x_j \geq 0, j = 1, \dots, n$$

In Matrix Form

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\begin{array}{rcl}
\mathsf{max} & z = \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & > 0
\end{array}$$

Our Numerical Example

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \ i = 1, \dots, m$$

$$x_j \geq 0, \ j = 1, \dots, n$$

$$\begin{array}{ccc}
\mathsf{max} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
& A \mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}$$

$$\mathbf{x} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$$

$$\max \quad \begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\begin{bmatrix} 5 & 10 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 60 \\ 40 \end{bmatrix}$$
$$x_1, x_2 > 0$$

Course Organization Introduction

Outline

1. Course Organization

2. Introduction
Resource Allocation
Duality

Duality

Resource Valuation problem: Determine the value of the raw materials on hand such that: The company must be willing to sell the raw materials should an outside firm offer to buy them at a price consistent with the market

```
z_i value of a unit of raw material i
```

 $\sum_{i=1}^{m} b_i z_i$ opportunity cost (cost of having instead of selling)

 ρ_i prevailing unit market value of material i

 σ_j prevailing unit product price

Goal is to minimize the lost opportunity cost (ie, the cost for the outside company)

$$\min \sum_{i=1}^{m} b_i z_i \tag{1}$$

$$z_i \ge \rho_i, \quad i = 1 \dots m$$
 (2)

$$\sum_{i=1}^{m} z_i a_{ij} \ge \sigma_j, \quad j = 1 \dots n \tag{3}$$

(2) and (3) otherwise contradicting market

Let

$$y_i = z_i - \rho_i$$

markup that the company would make by reselling the raw material instead of producing.

$$\min \sum_{i=1}^{m} y_i b_i + \sum_{j=1}^{n} \rho_j b_i \qquad \max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{i=1}^{m} y_i a_{ij} \ge c_j, \quad j = 1 \dots n$$

$$y_i \ge 0, \quad i = 1 \dots m$$

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$

$$x_j \ge 0, \quad j = 1, \dots, n$$

Dual Problem

Primal Problem