DM554/DM545
 Linear and Integer Programming

Lecture 10
 IP Modeling
 Formulations, Relaxations

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Modeling

Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations

Outline

1. Modeling

Graph Problems
Modeling Tricks

2. Formulations

Uncapacited Facility Location
Alternative Formulations

Review

- Assignment Problem
- Set Problems: Knapsack problem, facility location problem

Outline

1. Modeling

Graph Problems
Modeling Tricks

2. Formulations

Uncapacited Facility Location
Alternative Formulations

Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

$$
\begin{aligned}
& \max \sum_{v \in V} w_{e} x_{e} \\
& \sum_{e \in E: v \in e} x_{e} \leq 1 \quad \forall v \in V \\
& x_{e} \in\{0,1\} \quad \forall e \in E
\end{aligned}
$$

Special case: bipartite matching \equiv assignment problems

Vertex Cover

Select a subset $S \subseteq V$ such that each edge has at least one end vertex in S.

$$
\min \quad \begin{aligned}
\sum_{v \in V} x_{v} & \\
x_{v}+x_{u} & \geq 1 \quad \forall u, v \in V, u v \in E \\
x_{v} & \in\{0,1\} \quad \forall v \in V
\end{aligned}
$$

Approximation algorithm: set S derived from the LP solution in this way:

$$
S_{L P}=\left\{v \in V: x_{v}^{*} \geq 1 / 2\right\}
$$

(it is a cover since $x_{v}^{*}+x_{u}^{*} \geq 1$ implies $x_{v}^{*} \geq 1 / 2$ or $x_{u}^{*} \geq 1 / 2$)

Proposition

The LP rounding approximation algorithm gives a 2-approximation:
$\left|S_{L P}\right| \leq 2\left|S_{\text {OPT }}\right|$ (at most as bad as twice the optimal solution)
Proof: Let \bar{x} be opt to IP. Then $\sum x_{v}^{*} \leq \sum \bar{x}_{v}$.
$\left|S_{L P}\right|=\sum_{v \in S_{L P}} 1 \leq \sum_{v \in V} 2 x_{v}^{*}$ since $x_{v}^{*} \geq 1 / 2$ for each $v \in S_{L P}$
$\left|S_{L P}\right| \leq 2 \sum_{v \in V} x_{v}^{*} \leq 2 \sum_{v \in V} \bar{x}_{v}=2\left|S_{O P T}\right|$

Maximum Independent Set

Find the largest subset $S \subseteq V$ such that the induced graph has no edges

$$
\begin{aligned}
\max \sum_{v \in V} x_{v} & \\
x_{v}+x_{u} & \leq 1 \quad \forall u, v \in V, u v \in E \\
x_{v} & =\{0,1\} \quad \forall v \in V
\end{aligned}
$$

Optimal sol of LP relaxation sets $x_{v}=1 / 2$ for all variables and has value $|V| / 2$.

What is the value of an optimal IP solution of a complete graph?
LP relaxation gives an $O(n)$-approximation (almost useless)

Traveling Salesman Problem

- Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in a printed circuit board manufacturing process or car manufacturing process
- n locations, $c_{i j}$ cost of travel

Variables:

$$
x_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

Objective:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Constraints:

$$
\begin{aligned}
& \sum_{j: j \neq i} x_{i j}=1 \\
& \sum_{i: i \neq j} x_{i j}=1
\end{aligned}
$$

$$
\begin{aligned}
& \forall i=1, \ldots, n \\
& \forall j=1, \ldots, n
\end{aligned}
$$

- cut set constraints

$$
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq 1
$$

$$
\forall S \subset N, S \neq \emptyset
$$

- subtour elimination constraints

$$
\sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1
$$

$$
\forall S \subset N, 2 \leq|S| \leq n-1
$$

Outline

1. Modeling

Graph Problems
Modeling Tricks

2. Formulations

Uncapacited Facility Location Alternative Formulations

Modeling Tricks

Objective function and/or constraints do not appear to be linear?

- Absolute values
- Minimize the largest function value
- Maximize the smallest function value
- Constraints include variable division
- Constraints are either/or
- A variable must take one of several candidate values

Modeling Tricks I

Minimize the largest of a number of function values:

$$
\min \max \left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}
$$

- Introduce an auxiliary variable z :

$$
\begin{aligned}
& \min \quad z \\
& \text { s. t. } f\left(x_{1}\right) \leq z \\
& f\left(x_{2}\right) \leq z
\end{aligned}
$$

Modeling Tricks II

Constraints include variable division:

- Constraint of the form

$$
\frac{a_{1} x+a_{2} y+a_{3} z}{d_{1} x+d_{2} y+d_{3} z} \leq b
$$

- Rearrange:

$$
a_{1} x+a_{2} y+a_{3} z \leq b\left(d_{1} x+d_{2} y+d_{3} z\right)
$$

which gives:

$$
\left(a_{1}-b d_{1}\right) x+\left(a_{2}-b d_{2}\right) y+\left(a_{3}-b d_{3}\right) z \leq 0
$$

III "Either/Or Constraints"

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are "either/or":

$$
\begin{array}{ll}
a_{1} x_{1}+a_{2} x_{2} \leq b_{1} & \text { or } \\
d_{1} x_{1}+d_{2} x_{2} \leq b_{2} &
\end{array}
$$

Introduce new variable $y \in\{0,1\}$ and a large number M :

$$
\begin{array}{ll}
a_{1} x_{1}+a_{2} x_{2} \leq b_{1}+M y & \text { if } y=0 \text { then this is active } \\
d_{1} x_{1}+d_{2} x_{2} \leq b_{2}+M(1-y) & \text { if } y=1 \text { then this is active }
\end{array}
$$

III "Either/Or Constraints"

Binary integer programming allows to model alternative choices:

- Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP. introduce y auxiliary binary variable and M a big number:

$$
\begin{aligned}
A x & \leq b+M y \\
A^{\prime} x & \leq b^{\prime}+M(1-y)
\end{aligned}
$$

$$
\text { if } y=0 \text { then this is active }
$$

$$
\text { if } y=1 \text { then this is active }
$$

IV "Either/Or Constraints"

Generally:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 m} x_{m} \leq d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 m} x_{m} \leq d_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N m} x_{m} \leq d_{N}
\end{gathered}
$$

Exactly K of the N constraints must be satisfied. Introduce binary variables $y_{1}, y_{2}, \ldots, y_{N}$ and a large number M

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 m} x_{m} \leq d_{1}+M y_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 m} x_{m} \leq d_{2}+M y_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N m} x_{m} \leq d_{N}+M y_{N} \\
y_{1}+y_{2}+\ldots y_{N}=N-K
\end{gathered}
$$

K of the y-variables are 0 , so K constraints must be satisfied

IV "Either/Or Constraints"

At least $h \leq k$ of $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, k$ must be satisfied introduce $y_{i}, i=1, \ldots, k$ auxiliary binary variables

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}+M y_{i} \\
\sum_{i} y_{i} \leq k-h
\end{gathered}
$$

V "Possible Constraints Values"

A constraint must take on one of N given values:

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{1} \text { or } \\
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{2} \text { or } \\
\vdots \\
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{N}
\end{gathered}
$$

Introduce binary variables $y_{1}, y_{2}, \ldots, y_{N}$:

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{1} y_{1}+d_{2} y_{2}+\ldots d_{N} y_{N} \\
y_{1}+y_{2}+\ldots y_{N}=1
\end{gathered}
$$

Outline

2. Formulations

Uncapacited Facility Location
Alternative Formulations

Outline

2. Formulations

Uncapacited Facility Location
Alternative Formulations

Uncapacited Facility Location (UFL)

Given:

- depots $N=\{1, \ldots, n\}$
- clients $M=\{1, \ldots, m\}$
- f_{j} fixed cost to use depot j
- transport cost for all orders $c_{i j}$

Task: Which depots to open and which depots serve which client

Variables: $y_{j}=\left\{\begin{array}{ll}1 & \text { if depot open } \\ 0 & \text { otherwise }\end{array}, x_{i j}\right.$ fraction of demand of i satisfied by j Objective:

$$
\min \sum_{i \in M} \sum_{j \in N} c_{i j} x_{i j}+\sum_{j \in N} f_{j} y_{j}
$$

Constraints:

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, m \\
\sum_{i \in M} x_{i j} \leq m y_{j} & \forall j \in N
\end{array}
$$

Outline

2. Formulations

Uncapacited Facility Location
Alternative Formulations

Good and Ideal Formulations

Definition (Formulation)
A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^{n} \times \mathbb{R}^{p}$ if and only if $X=P \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{p}\right)$

That is, if it does not leave out any of the solutions of the feasible region X.
There are infinite formulations
Definition (Convex Hull)
Given a set $X \subseteq \mathbb{Z}^{n}$ the convex hull of X is defined as:

$$
\begin{aligned}
\operatorname{conv}(X)= & \left\{\mathbf{x}: \mathbf{x}=\sum_{i=1}^{t} \lambda_{i} \mathbf{x}^{i}, \sum_{i=1}^{t} \lambda_{i}=1, \lambda_{i} \geq 0, \text { for } i=1, \ldots, t,\right. \\
& \text { for all finite subsets } \left.\left\{\mathbf{x}^{1}, \ldots, \mathbf{x}^{t}\right\} \text { of } X\right\}
\end{aligned}
$$

Proposition

```
\(\operatorname{conv}(X)\) is a polyhedron (ie, representable as \(A \mathbf{x} \leq \mathbf{b}\) )
```

Proposition
Extreme points of conv (X) all lie in X
Hence:

$$
\max \left\{\mathbf{c}^{\top} \mathbf{x}: \mathbf{x} \in X\right\} \equiv \max \left\{\mathbf{c}^{\top} \mathbf{x}: \mathbf{x} \in \operatorname{conv}(X)\right\}
$$

However it might require exponential number of inequalities to describe conv (X)
What makes a formulation better than another?

$$
X \subseteq \operatorname{conv}(X) \subseteq P_{2} \subset P_{1}
$$

P_{2} is better than P_{1}
Definition
Given a set $X \subseteq \mathbb{R}^{n}$ and two formulations P_{1} and P_{2} for X, P_{2} is a better formulation than P_{1} if $P_{2} \subset P_{1}$

Example
$P_{1}=\mathrm{UFL}$ with $\sum_{i \in M} x_{i j} \leq m y_{j} \quad \forall j \in N$
$P_{2}=$ UFL with $x_{i j} \leq y_{j} \quad \forall i \in M, j \in N$

$$
P_{2} \subset P_{1}
$$

- $P_{2} \subseteq P_{1}$ because summing $x_{i j} \leq y_{j}$ over $i \in M$ we obtain $\sum_{i \in M} x_{i j} \leq m y_{j}$
- $P_{2} \subset P_{1}$ because there exists a point in P_{1} but not in P_{2} : $m=6=3 \cdot 2=k \cdot n$

$$
\begin{array}{ll}
x_{10}=1, x_{20}=1, x_{30}=1, & \sum_{i} x_{i 0} \leq 6 y_{0} \\
y_{0}=1 / 2 \\
x_{41}=1, x_{51}=1, x_{61}=1 & \sum_{i} x_{i 1} \leq 6 y_{1} \quad y_{1}=1 / 2
\end{array}
$$

Resume

1. Modeling

Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations

