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Cutting Plane Algorithms
Branch and BoundValid Inequalities

• IP: z = max{cTx : x ∈ X},X = {x : Ax ≤ b, x ∈ Zn
+}

• Proposition: conv(X ) = {x : Ãx ≤ b̃, x ≥ 0} is a polyhedron

• LP: z = max{cTx : Ãx ≤ b̃, x ≥ 0} would be the best formulation

• Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

ax ≤ b is a valid inequality for X ⊆ Rn if ax ≤ b ∀x ∈ X

Which are useful inequalities? and how can we find them?
How can we use them?
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Cutting Plane Algorithms
Branch and BoundExample: Pre-processing

• X = {(x , y) : x ≤ 999y ; 0 ≤ x ≤ 5, y ∈ B1}

x ≤ 5y

• X = {x ∈ Zn
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

2x1 + 2x2 + x3 + x4 ≥
13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11

= 6 +
6
11

2x1 + 2x2 + x3 + x4 ≥ 7

• Capacitated facility location:∑
i∈M

xij ≤ bjyj ∀j ∈ N xij ≤ bjyj∑
j∈N

xij = ai ∀i ∈ M xij ≤ ai

xij ≥ 0, yj ∈ Bn xij ≤ min{ai , bj}yj
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Cutting Plane Algorithms
Branch and BoundChvátal-Gomory cuts

• X ∈ P ∩ Zn
+, P = {x ∈ Rn

+ : Ax ≤ b}, A ∈ Rm×n

• u ∈ Rm
+ , {a1, a2, . . . an} columns of A

CG procedure to construct valid inequalities

1)
n∑

j=1

uajxj ≤ ub valid: u ≥ 0

2)
n∑

j=1

buajcxj ≤ ub valid: x ≥ 0 and
∑
buajcxj ≤

∑
uajxj

3)
n∑

j=1

buajcxj ≤ bubc valid for X since x ∈ Zn

Theorem
by applying this CG procedure a finite number of times every valid inequality
for X can be obtained
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Cutting Plane Algorithms
Branch and BoundCutting Plane Algorithms

• X ∈ P ∩ Zn
+

• a family of valid inequalities F : aTx ≤ b, (a, b) ∈ F for X

• we do not find them all a priori, only interested in those close to
optimum

Cutting Plane Algorithm
Init.: t = 0,P0 = P

Iter. t: Solve z̄ t = max{cTx : x ∈ Pt}
let xt be an optimal solution
if xt ∈ Zn stop, xt is opt to the IP
if xt 6∈ Zn solve separation problem for xt and F
if (at , bt) is found with atxt > bt that cuts off x t

Pt+1 = P ∩ {x : aix ≤ bi , i = 1, . . . , t}

else stop (Pt is in any case an improved formulation)
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Cutting Plane Algorithms
Branch and BoundGomory’s fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts
• max{cTx : Ax = b, x ≥ 0, x ∈ Zn}
• Solve LPR to optimality I ĀN = A−1

B AN 0 b̄

c̄B c̄N(≤ 0) 1 −d̄

 xu = b̄u −
∑
j∈N

āujxj , u ∈ B

z = d̄ +
∑
j∈N

c̄jxj

• If basic optimal solution to LPR is not integer then ∃ some row u:
b̄u 6∈ Z1.
The Chvatál-Gomory cut applied to this row is:

xBu +
∑
j∈N

bāujcxj ≤ bb̄uc

(Bu is the index in the basis B corresponding to the row u) (cntd)
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Cutting Plane Algorithms
Branch and Bound

• Eliminating xBu = b̄u −
∑
j∈N

āujxj in the CG cut we obtain:

∑
j∈N

(āuj − bāujc︸ ︷︷ ︸
0≤fuj<1

)xj ≥ b̄u − bb̄uc︸ ︷︷ ︸
0<fu<1∑

j∈N

fujxj ≥ fu

fu > 0 or else u would not be row of fractional solution. It implies that
x∗ in which x∗N = 0 is cut out!

• Moreover: when x is integer, since all coefficient in the CG cut are
integer the slack variable of the cut is also integer:

s = −fu +
∑
j∈N

fujxj

(theoretically it terminates after a finite number of iterations, but in practice
not successful.)
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Cutting Plane Algorithms
Branch and BoundExample

max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2integer x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1

x2

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+----|
| | 1 | 6 | 1 | 0 | 0 | 18 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+----+----+----+----|
| | 1 | 4 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+------+------+----+------|
| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+------+------+----+------|
| | 0 | 0 | -2/3 | -1/3 | 1 | -13 |

x2 = 5/2, x1 = 3
Optimum, not integer
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Cutting Plane Algorithms
Branch and Bound

• We take the first row:
| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |

• CG cut
∑

j∈N fujxj ≥ fu  1
6x3 + 5

6x4 ≥ 1
2

• Let’s see that it leaves out x∗: from the CG proof:

1/6 (x1 + 6x2 ≤ 18)
5/6 (x1 ≤ 3)

x1 + x2 ≤ 3 + 5/2 = 5.5

since x1, x2 are integer x1 + x2 ≤ 5

• Let’s see how it looks in the space of the original variables: from the first
tableau:

x3 = 18− 6x2 − x1
x4 = 3− x1

1
6

(18− 6x2 − x1) +
5
6

(3− x1) ≥ 1
2

 x1 + x2 ≤ 5
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Cutting Plane Algorithms
Branch and Bound

• Graphically:

x1 + 4x2 = 2

x1 + x2 = 5

x1 + 6x2 = 18

x1 = 3

x1

x2

• Let’s continue:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -1/6 | -5/6 | 1 | 0 | -1/2 |
| | 0 | 1 | 1/6 | -1/6 | 0 | 0 | 5/2 |
| | 1 | 0 | 0 | 1 | 0 | 0 | 3 |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -2/3 | -1/3 | 0 | 1 | -13 |

We need to apply dual-simplex
(will always be the case, why?)

ratio rule: min{| cjaij
| : aij < 0}
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Cutting Plane Algorithms
Branch and Bound

• After the dual simplex iteration:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | 1/5 | 1 | -6/5 | 0 | 3/5 |
| | 0 | 1 | 1/5 | 0 | -1/5 | 0 | 13/5 |
| | 1 | 0 | -1/5 | 0 | 6/5 | 0 | 12/5 |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | -3/5 | 0 | -2/5 | 1 | -64/5 |

We can choose any of the three
rows.

Let’s take the third: CG cut:
4
5x3 +

1
5x5 ≥ 2

5

• In the space of the original variables:

4(18− x1 − 6x2) + (5− x1 − x2) ≥ 2
x1 + 5x2 ≤ 15

x1

x2

• ...
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Cutting Plane Algorithms
Branch and BoundBranch and Bound

• Consider the problem z = max{cT x : x ∈ S}

• Divide and conquer: let S = S1 ∪ . . . ∪ Sk be a decomposition of S into
smaller sets, and let zk = max{cT x : x ∈ Sk} for k = 1, . . . ,K . Then
z = maxk zk

For instance if S ⊆ {0, 1}3 the enumeration tree is:

S

S0

S00

S000

x3 = 0

S001

x2 = 0

S01

S010 S011

x1 = 0

S1

S10

S100 S101

S11

S110 S111

x1 = 1
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Cutting Plane Algorithms
Branch and BoundBounding

Let’s consider a maximization problem (gurobi’s default is minimization)

• Let zk be an upper bound on zk (dual bound)

• Let zk be an lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z = maxk zk is a lower bound on z

• z = maxk zk is an upper bound on z
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Cutting Plane Algorithms
Branch and BoundPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z = 26
z = 21
pruned by bounding

40
−∞

24
13

37
−∞

z = 37
z = 13
nothing to prune
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Cutting Plane Algorithms
Branch and BoundPruning

27
13

26
14 infeas.

z = 26
z = 14
pruned by infeasibility
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Cutting Plane Algorithms
Branch and BoundExample

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1

x2

• Solve LP
| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+---|
| | 1 | 4 | 1 | 0 | 0 | 8 |
| | 4 | 1 | 0 | 1 | 0 | 8 |
|---+----+----+----+----+----+---|
| | 1 | 2 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+------+----+------+----+----|
| I’=I-II’ | 0 | 15/4 | 1 | -1/4 | 0 | 6 |
| II’=1/4II | 1 | 1/4 | 0 | 1/4 | 0 | 2 |
|--------------+----+------+----+------+----+----|
| III’=III-II’ | 0 | 7/4 | 0 | -1/4 | 0 | -2 |
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Cutting Plane Algorithms
Branch and Bound

• continuing

| | x1 | x2 | x3 | x4 | -z | b |
|----------------+----+----+-------+-------+----+---------|
| I’=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |
| II’=II-1/4I’ | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |
|----------------+----+----+-------+-------+----+---------|
| III’=III-7/4I’ | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution
will not be more than
2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1 = 1
x2

x1
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Cutting Plane Algorithms
Branch and Bound

• Let’s consider first the left branch:
| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+-------+-------+----+----+-------|
| | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |
| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |
|---+----+----+-------+-------+----+----+-------|
| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
| I’=I-III | 0 | 0 | 1/15 | -4/15 | 1 | 0 | -9/15 |
| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |
| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |
|----------+----+----+-------+-------+----+---+-------|
| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|-------------+----+----+--------+----+-------+---+--------|
| I’=-15/4I | 0 | 0 | -1/4 | 1 | -15/4 | 0 | 9/4 |
| II’=II-1/4I | 0 | 1 | 15/60 | 0 | -1/4 | 0 | 7/4 |
| III’=III+I | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
|-------------+----+----+--------+----+-------+---+--------|
| | 0 | 0 | -37/60 | 0 | -9/4 | 1 | -90/20 |

always a b term
negative after
branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cj

aij
| : aij < 0}
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Cutting Plane Algorithms
Branch and Bound

• Let’s branch again

4.8

4.5

B

x2 ≤ 1

A

x2 ≥ 2

x1 ≤ 1

C

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let’s take A.
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Cutting Plane Algorithms
Branch and Bound

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|---+----+----+--------+----+-------+----+---+------|
| | 0 | -1 | 0 | 0 | 0 | 1 | 0 | -2 |
| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |
| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |
| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |
|---+----+----+--------+----+-------+----+---+------|
| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|-------+----+----+--------+----+-------+----+---+------|
| III+I | 0 | 0 | 1/4 | 0 | -1/4 | 1 | 0 | -1/4 |
| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |
| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |
| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |
|-------+----+----+--------+----+-------+----+---+------|
| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

continuing we find:
x1 = 0
x2 = 2
OPT = 4
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Cutting Plane Algorithms
Branch and Bound

The final tree:

4.8
−∞

4.5
−∞

3
3

x1=1
x2=1

x2 ≤ 1

4
4

x1=0
x2=2

x2 ≥ 2

x2 ≤ 1

2
2

x1=2
x2=0

x1 ≥ 2

The optimal solution is 4.
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Cutting Plane Algorithms
Branch and BoundPruning

Pruning:

1. by optimality: zk = max{cT x : x ∈ Sk}

2. by bound zk ≤ z
Example:

5.8
−∞

4.5
−∞

4
4

2.3
−∞

3. by infeasibility Sk = ∅
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Cutting Plane Algorithms
Branch and BoundB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.
Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}
Choosing Node for Examination from the list of active (or open):
• Depth First Search (a good primal sol. is good for pruning + easier to
reoptimize by just adding a new constraint)

• Best Bound First: (eg. largest upper: zs = maxk zk

or largest lower - to die fast)
• Mixed strategies
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Cutting Plane Algorithms
Branch and Bound

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

z = max{z , 4}

Store the active nodes: bounds + optimal basis (remember the revised
simplex!)
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Cutting Plane Algorithms
Branch and BoundEnhancements

• Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{cTx : Ax ≤ b, l ≤ x ≤ u}

fix xj = lj if cj < 0 and aij > 0 for all i
fix xj = uj if cj > 0 and aij < 0 for all i

• Priorities: establish the next variable to branch

• Special ordered sets SOS (or generalized upper bound GUB)

k∑
j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and
S2 = S ∩ {x : xji = 0, i = r + 1, .., k}, r = min{t :

∑t
i=1 x

∗
ji ≥

1
2}
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Cutting Plane Algorithms
Branch and Bound

• Cutoff value: a user-defined primal bound to pass to the system.

• Simplex strategies: simplex is good for reoptimizing but for large models
interior points methods may work best.

• Strong branching: extra work to decide more accurately on which
variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)
3. z↓j , z

↑
j (dual bound of down and up branch)

j∗ = argmin
j∈C

max{z↓j , z
↑
j }

ie, choose variable with largest decrease of dual bound, eg UB for
max

29



Cutting Plane Algorithms
Branch and Bound

There are four common reasons because integer programs can require a
significant amount of solution time:

1. There is lack of node throughput due to troublesome linear programming
node solves.

2. There is lack of progress in the best integer solution, i.e., the upper
bound.

3. There is lack of progress in the best lower bound.

4. There is insufficient node throughput due to numerical instability in the
problem data or excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

gap =
|Primal bound− Dual bound|

Primal bound + ε
· 100
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Cutting Plane Algorithms
Branch and Bound

• heuristics for finding feasible solutions (generally NP-complete problem)

• find better lower bounds if they are weak: addition of cuts, stronger
formulation, branch and cut

• Branch and cut: a B&B algorithm with cut generation at all nodes of the
tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut
pool that apply at the node
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Cutting Plane Algorithms
Branch and BoundAdvanced Techniques

We did not treat:

• LP: Dantzig Wolfe decomposition

• LP: Column generation

• LP: Delayed column generation

• IP: Branch and Price

• LP: Benders decompositions

• LP: Lagrangian relaxation
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