DM545 Linear and Integer Programming

Lecture 13 Cutting Planes and Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Cutting Plane Algorithms Branch and Bound

1. Cutting Plane Algorithms

2. Branch and Bound

Outline

1. Cutting Plane Algorithms

2. Branch and Bound

Valid Inequalities

- IP: $z = \max{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in X}, X = {\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n}$
- Proposition: $\operatorname{conv}(X) = \{\mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0\}$ is a polyhedron
- LP: $z = \max{\{\mathbf{c}^T \mathbf{x} : \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\}}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

 $\mathbf{ax} \leq \mathbf{b}$ is a valid inequality for $X \subseteq \mathbb{R}^n$ if $\mathbf{ax} \leq \mathbf{b} \ \forall \mathbf{x} \in X$

Which are useful inequalities? and how can we find them? How can we use them?

Example: Pre-processing

• $X = \{(x, y) : x \le 999y; 0 \le x \le 5, y \in \mathbb{B}^1\}$

 $x \leq 5y$

• $X = \{x \in \mathbb{Z}_+^n : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{13}{11}x_1 + \frac{20}{11}x_2 + x_3 + \frac{6}{11}x_4 \ge \frac{72}{11} = 6 + \frac{6}{11}$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

• Capacitated facility location:

 $\sum_{i \in M} x_{ij} \leq b_j y_j \quad \forall j \in N$ $\sum_{j \in N} x_{ij} = a_i \quad \forall i \in M$ $x_{ij} \geq 0, y_j \in B^n$ $x_{ij} \leq \min\{a_i, b_j\} y_j$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}_+^n$, $P = \{ \mathbf{x} \in \mathbb{R}_+^n : A\mathbf{x} \le \mathbf{b} \}$, $A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}^m_+$, $\{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$ columns of A

CG procedure to construct valid inequalities

1)
$$\sum_{j=1}^{n} \mathbf{u} \mathbf{a}_{j} x_{j} \leq \mathbf{u} \mathbf{b}$$
 valid: $\mathbf{u} \geq \mathbf{0}$
2)
$$\sum_{j=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \mathbf{u} \mathbf{b}$$
 valid: $\mathbf{x} \geq \mathbf{0}$ and $\sum \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \sum \mathbf{u} \mathbf{a}_{j} x_{j}$
3)
$$\sum_{j=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \lfloor \mathbf{u} \mathbf{b} \rfloor$$
 valid for X since $\mathbf{x} \in \mathbb{Z}^{n}$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}^n_+$
- a family of valid inequalities $\mathcal{F} : \mathbf{a}^T \mathbf{x} \leq b, (\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

Init.: $t = 0, P^0 = P$ Iter. t: Solve $\overline{z}^t = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in P^t\}$ let \mathbf{x}^t be an optimal solution if $\mathbf{x}^t \in \mathbb{Z}^n$ stop, \mathbf{x}^t is opt to the IP if $\mathbf{x}^t \notin \mathbb{Z}^n$ solve separation problem for \mathbf{x}^t and \mathcal{F} if (\mathbf{a}^t, b^t) is found with $\mathbf{a}^t \mathbf{x}^t > b^t$ that cuts off x^t

$$P^{t+1} = P \cap \{\mathbf{x} : \mathbf{a}^i \mathbf{x} \le b^i, i = 1, \dots, t\}$$

else stop (P^t is in any case an improved formulation)

Gomory's fractional cutting plane algorithm and Bound

Cutting plane algorithm + Chvátal-Gomory cuts

- max{ $\mathbf{c}^T \mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} > 0, \mathbf{x} \in \mathbb{Z}^n$ }
- Solve LPR to optimality

$$\begin{bmatrix} I & \bar{A}_N = A_B^{-1} A_N & 0 & \bar{b} \\ \bar{c}_B & \bar{c}_N (\leq 0) & 1 & -\bar{d} \end{bmatrix} \qquad \begin{array}{c} x_u = \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j, \quad u \in B \\ z = \bar{d} + \sum_{j \in N} \bar{c}_j x_j \end{array}$$

• If basic optimal solution to LPR is not integer then \exists some row u: $\overline{b}_{ii} \notin \mathbb{Z}^1$.

The Chvatál-Gomory cut applied to this row is:

$$x_{B_u} + \sum_{j \in N} \lfloor \bar{a}_{uj} \rfloor x_j \le \lfloor \bar{b}_u \rfloor$$

 $(B_u$ is the index in the basis B corresponding to the row u)

(cntd)

• Eliminating
$$x_{B_u} = \overline{b}_u - \sum_{j \in N} \overline{a}_{uj} x_j$$
 in the CG cut we obtain:

$$\sum_{j \in N} (\underline{\overline{a}_{uj}} - \lfloor \overline{a}_{uj} \rfloor) x_j \ge \underline{\overline{b}_u} - \lfloor \overline{\overline{b}_u} \rfloor$$

$$\sum_{j \in N} f_{uj} x_j \ge f_u$$
for a product of the conductive formula to be a pr

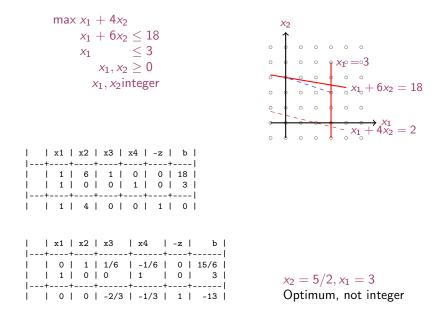
 $f_u > 0$ or else u would not be row of fractional solution. It implies that x^* in which $x_N^* = 0$ is cut out!

• Moreover: when x is integer, since all coefficient in the CG cut are integer the slack variable of the cut is also integer:

$$s = -f_u + \sum_{j \in N} f_{uj} x_j$$

(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example



- We take the first row:
 | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
- CG cut $\sum_{j \in N} f_{uj} x_j \ge f_u \rightsquigarrow \frac{1}{6} x_3 + \frac{5}{6} x_4 \ge \frac{1}{2}$
- Let's see that it leaves out x*: from the CG proof:

$$\frac{1/6 (x_1 + 6x_2 \le 18)}{5/6 (x_1 \le 3)}$$

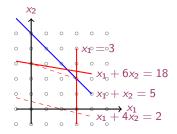
$$\frac{5/6 (x_1 \le 3)}{x_1 + x_2 \le 3 + 5/2 = 5.5}$$

since x_1, x_2 are integer $x_1 + x_2 \le 5$

• Let's see how it looks in the space of the original variables: from the first tableau:

$$\begin{aligned} x_3 &= 18 - 6x_2 - x_1 \\ x_4 &= 3 - x_1 \\ \frac{1}{6}(18 - 6x_2 - x_1) + \frac{5}{6}(3 - x_1) \geq \frac{1}{2} \qquad \rightsquigarrow \qquad x_1 + x_2 \leq 5 \end{aligned}$$

• Graphically:



Let's continue:

x1 | x2 xЗ x4 x5 | -z 1 b -1/6-5/6-1/21/6-1/65/20 З 0 -2/3-1/30 -13

We need to apply dual-simplex (will always be the case, why?)

ratio rule: min $\{ \left| \frac{c_j}{a_{ii}} \right| : a_{ij} < 0 \}$

• After the dual simplex iteration:

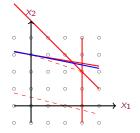
| x4 x1 | x2 | xЗ x5 -z | b -6/5 3/5 /5 0 13/5 /5 -1/5 0 -1/5 6/5 12/50 0 -2/5 -3/5 0 1 -64/5

• In the space of the original variables:

$$4(18 - x_1 - 6x_2) + (5 - x_1 - x_2) \ge 2$$
$$x_1 + 5x_2 \le 15$$

We can choose any of the three rows.

Let's take the third: CG cut: $\frac{4}{5}x_3 + \frac{1}{5}x_5 \ge \frac{2}{5}$



Outline

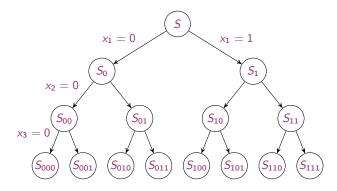
1. Cutting Plane Algorithms

2. Branch and Bound

Branch and Bound

- Consider the problem $z = \max\{c^T x : x \in S\}$
- Divide and conquer: let S = S₁ ∪ ... ∪ S_k be a decomposition of S into smaller sets, and let z^k = max{c^Tx : x ∈ S_k} for k = 1,..., K. Then z = max_k z^k

For instance if $S \subseteq \{0, 1\}^3$ the enumeration tree is:

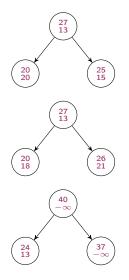


Bounding

Let's consider a maximization problem (gurobi's default is minimization)

- Let \overline{z}^k be an upper bound on z^k (dual bound)
- Let \underline{z}^k be an lower bound on z^k (primal bound)
- $(\underline{z}^k \leq z^k \leq \overline{z}^k)$
- $\underline{z} = \max_k \underline{z}^k$ is a lower bound on z
- $\overline{z} = \max_k \overline{z}^k$ is an upper bound on z

Pruning

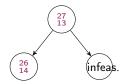


 $\overline{z} = 25$ $\underline{z} = 20$ pruned by optimality

 $\overline{z} = 26$ $\underline{z} = 21$ pruned by bounding

 $\overline{z} = 37$ $\underline{z} = 13$ nothing to prune

Pruning



 $\overline{z} = 26$ $\underline{z} = 14$ pruned by infeasibility

Example

$$\begin{array}{rl} \max \ x_1 \ + 2x_2 \\ x_1 \ + 4x_2 \leq 8 \\ 4x_1 \ + \ x_2 \leq 8 \\ x_1, x_2 \geq 0, \text{integer} \end{array}$$

$$x_{2}$$

$$x_{2}$$

$$x_{1}$$

$$x_{1}$$

$$x_{1} + 4x_{2} = 8$$

$$x_{1}$$

$$x_{1}$$

$$x_{1} + 2x_{2} = 1$$

$$4x_{1} + x_{2} = 8$$

• Solve LP

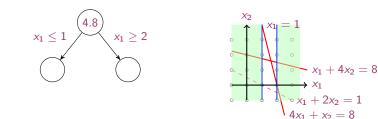
x1 x2 x3 x4 -z b
++++
1 4 1 0 0 8
4 1 0 1 0 8
++++
x1 x2 x3 x4 -z b
x1 x2 x3 x4 -z b ++++++++
++++++
++++ I'=I-II' 0 15/4 1 -1/4 0 6

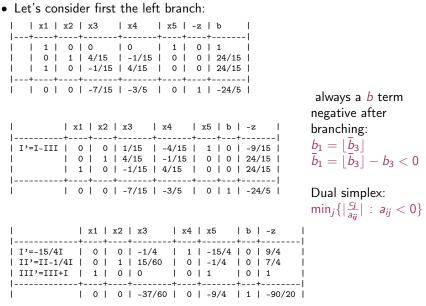
Cutting Plane Algorithms Branch and Bound

continuing

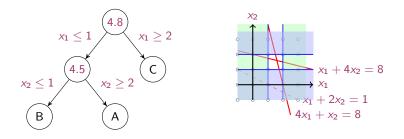
 $x_2 = 1 + 3/5 = 1.6$ | x1 | x2 | x3 | x4 | -z | b $x_1 = 8/5$ The optimal solution I'=4/15I 0 | 1 | 4/15 -1/15 | 0 | 24/15 II'=II-1/4I' -1/15 | 4/15 24/151 | 0 | 0 1 will not be more than 2 + 14/5 = 4.8III'=III-7/4I' 0 | -7/15 | -3/5 1 | -2-14/5 | 0

• Both variables are fractional, we pick one of the two:





• Let's branch again



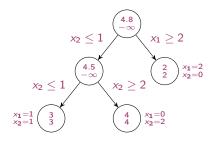
We have three open problems. Which one we choose next? Let's take A.

x1 x2 x3 x4 x5 x6 b -z
$\begin{vmatrix}++++++++++++++++++$
++++++++ 0 0 -37/60 0 -9/4 1 -9/2
x1 x2 x3 x4 x5 x6 b -z
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0 0 -37/60 0 -9/4 1 -9/2

continuing we find:

 $x_1 = 0$ $x_2 = 2$ OPT = 4

The final tree:



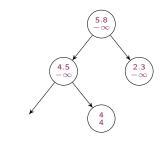
The optimal solution is 4.

Cutting Plane Algorithms Branch and Bound

Pruning

Pruning:

- 1. by optimality: $z^k = \max\{c^T x : x \in S^k\}$
- 2. by bound $\overline{z}^k \leq \underline{z}$ Example:



3. by infeasibility $S^k = \emptyset$

B&B Components

Bounding:

- 1. LP relaxation
- 2. Lagrangian relaxation
- 3. Combinatorial relaxation
- 4. Duality

Branching:

 $\begin{array}{l} S_1 = S \cap \{x : x_j \leq \lfloor \bar{x}_j \rfloor\} \\ S_2 = S \cap \{x : x_j \geq \lceil \bar{x}_j \rceil\} \end{array}$

thus the current optimum is not feasible either in S_1 or in S_2 . Which variable to choose?

Eg: Most fractional variable arg max_{i $\in C$} min{ f_i , $1 - f_i$ }

Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: z̄^s = max_k z̄^k or largest lower - to die fast)
- Mixed strategies

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

 $\underline{z} = \max{\{\underline{z}, 4\}}$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds redundant constraints variable fixing: eg: max{c^Tx : Ax ≤ b, l ≤ x ≤ u} fix x_j = l_j if c_j < 0 and a_{ij} > 0 for all i fix x_j = u_j if c_j > 0 and a_{ij} < 0 for all i
- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

$$\sum_{j=1}^{k} x_j = 1 \qquad x_j \in \{0,1\}$$

instead of: $S_0 = S \cap \{\mathbf{x} : x_j = 0\}$ and $S_1 = S \cap \{\mathbf{x} : x_j = 1\}$ $\{\mathbf{x} : x_j = 0\}$ leaves k - 1 possibilities $\{\mathbf{x} : x_j = 1\}$ leaves only 1 possibility hence tree unbalanced here: $S_1 = S \cap \{\mathbf{x} : x_{j_i} = 0, i = 1..r\}$ and $S_2 = S \cap \{\mathbf{x} : x_{j_i} = 0, i = r + 1, ..., k\}, r = \min\{t : \sum_{i=1}^{t} x_{i_i}^* \ge \frac{1}{2}\}$

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:
 - 1. choose a set C of fractional variables
 - 2. reoptimize for each of them (in case for limited iterations)
 - 3. $\overline{z}_i^{\downarrow}, \overline{z}_i^{\uparrow}$ (dual bound of down and up branch)

 $j^* = \arg\min_{j \in C} \max\{\overline{z}_j^{\downarrow}, \overline{z}_j^{\uparrow}\}$

ie, choose variable with largest decrease of dual bound, eg UB for \max

There are four common reasons because integer programs can require a significant amount of solution time:

- 1. There is lack of node throughput due to troublesome linear programming node solves.
- 2. There is lack of progress in the best integer solution, i.e., the upper bound.
- 3. There is lack of progress in the best lower bound.
- 4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

$$gap = \frac{|\mathsf{Primal bound} - \mathsf{Dual bound}|}{\mathsf{Primal bound} + \epsilon} \cdot 100$$

- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Advanced Techniques

We did not treat:

- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

1. Cutting Plane Algorithms

2. Branch and Bound