DM545
 Linear and Integer Programming

Linear Programming

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

\author{

1. Introduction
 Diet Problem
}
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP
Gaussian Elimination

Outline

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP Gaussian Elimination

\author{

1. Introduction
 Diet Problem
}
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP Gaussian Elimination

The Diet Problem (Blending Problems)

- Select a set of foods that will satisfy a set of daily nutritional requirement at minimum cost.
- Motivated in the 1930s and 1940s by US army.
- Formulated as a linear programming problem by George Stigler
- First linear programming problem
- (programming intended as planning not computer code)

min cost/weight subject to nutrition requirements:
eat enough but not too much of Vitamin A eat enough but not too much of Sodium eat enough but not too much of Calories

The Diet Problem

Suppose there are:

- 3 foods available, corn, milk, and bread, and
- there are restrictions on the number of calories (between 2000 and 2250) and the amount of Vitamin A (between 5,000 and 50,000)

Food	Cost per serving	Vitamin A	Calories
Corn	$\$ 0.18$	107	72
2% Milk	$\$ 0.23$	500	121
Wheat Bread	$\$ 0.05$	0	65

The Mathematical Model

```
Parameters (given data)
    \(F=\) set of foods
    \(N=\) set of nutrients
    \(a_{i j}=\) amount of nutrient \(i\) in food \(j, \forall i \in N, \forall j \in F\)
    \(c_{j}=\) cost per serving of food \(j, \forall j \in F\)
    \(F_{\text {min,j}}=\) minimum number of required servings of food \(j, \forall j \in F\)
    \(F_{\max , j}=\) maximum allowable number of servings of food \(j, \forall j \in F\)
    \(N_{\text {min,i }}=\) minimum required level of nutrient \(i, \forall i \in N\)
    \(N_{\max , i}=\) maximum allowable level of nutrient \(i, \forall i \in N\)
```

Decision Variables
$x_{j}=$ number of servings of food i to purchase/consume, $\forall j \in F$

The Mathematical Model

Objective Function: Minimize the total cost of the food

$$
\operatorname{Minimize} \sum_{j \in F} c_{j} x_{j}
$$

Constraint Set 1: For each nutrient $j \in N$, at least meet the minimum required level

$$
\sum_{j \in F} a_{i j} x_{j} \geq N_{\min , i}, \forall i \in N
$$

Constraint Set 2: For each nutrient $i \in N$, do not exceed the maximum allowable level.

$$
\sum_{j \in F} a_{i j} x_{j} \leq N_{\max , i}, \forall i \in N
$$

Constraint Set 3: For each food $j \in F$, select at least the minimum required number of servings

$$
x_{j} \geq F_{\min , j}, \forall j \in F
$$

Constraint Set 4: For each food $j \in F$, do not exceed the maximum allowable number of servings.

$$
x_{j} \leq F_{\max , j}, \forall j \in F
$$

The Mathematical Model

system of equalities and inequalities

$$
\begin{aligned}
\min & \sum_{j \in F} c_{j} x_{j} \\
\sum_{j \in F} a_{i j} x_{j} & \geq N_{\min , i},
\end{aligned} \quad \forall i \in N
$$

Mathematical Model

Graphical Representation:
Machines/Materials A and B
Products 1 and 2

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

In Matrix Form

$$
\begin{aligned}
& \max \quad c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0 \\
& \mathbf{c}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right], \quad A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \\
& \begin{aligned}
\max \quad z & =\mathbf{c}^{T} \mathbf{x} \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{aligned}
\end{aligned}
$$

Linear Programming

Abstract mathematical model:
Parameters, Decision Variables, Objective, Constraints
(+ Domains \& Quantifiers)
The Syntax of a Linear Programming Problem

objective func.	$\max / \min \mathbf{c}^{T} \cdot \mathbf{x}$	$\mathbf{c} \in \mathbb{R}^{n}$
constraints	s.t. $A \cdot \mathbf{x} \gtreqless \mathbf{b}$	$A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$
	$\mathbf{x} \geq \mathbf{0}$	$\mathbf{x} \in \mathbb{R}^{n}, \mathbf{0} \in \mathbb{R}^{n}$

Essential features: continuity, linearity (proportionality and additivity), certainty of parameters

- Any vector $\mathrm{x} \in \mathbb{R}^{n}$ satisfying all constraints is a feasible solution.
- Each $\mathbf{x}^{*} \in \mathbb{R}^{n}$ that gives the best possible value for $\mathbf{c}^{T} \mathbf{x}$ among all feasible x is an optimal solution or optimum
- The value $\mathbf{c}^{T} \mathbf{x}^{*}$ is the optimum value
- The linear programming model consisted of 9 equations in 77 variables
- Stigler, guessed an optimal solution using a heuristic method
- In 1947, the National Bureau of Standards used the newly developed simplex method to solve Stigler's model. It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal solution
- The original instance:
http://www.gams.com/modlib/libhtml/diet.htm

AMPL Model

```
# diet.mod
set NUTR;
set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >=0;
param f_max { j in FOOD} >= f_min[j];
param n_min { NUTR } > = 0;
param n__max {i in NUTR } >= n_min[i];
param amt {NUTR,FOOD} >= 0;
var Buy { j in FOOD} >= f_min[j], <= f_max[j]
minimize total_cost: sum { j in FOOD } cost [j] * Buy[j];
subject to diet {}\textrm{i}\mathrm{ in NUTR }:
    n_min[i]<= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];
```


AMPL Model

```
# diet.dat
data;
set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH
    MTL SPG TUR;
param: cost f_min f_max :=
    BEEF 3.19 \overline{0}100
    CHK 2.59 0 100
    FISH 2.29 0 100
    HAM 2.890 100
    MCH 1.89 0 100
    MTL 1.990 100
    SPG 1.990 100
    TUR 2.49 0 100;
param: n_min n_max :=
    A 700 10000
    C 700 10000
    B1 }7001000
    B2 700 10000;
# %
```

```
param amt (tr):
    A C B1 B2 :=
    BEEF 60 20 10 15
    CHK 8 O 20 20
    FISH 8 10 15 10
    HAM 40 40 3510
    MCH 15 351515
    MTL 70 30 15 15
    SPG 25 50 2515
    TUR 60 20 15 10;
```


Python Script

from gurobipy import *

categories, $\operatorname{minNutrition,~} \operatorname{maxNutrition}=$ multidict(\{
'calories': [1800, 2200],
'protein': [91, GRB.INFINITY],
'fat': [0, 65],
'sodium': [0, 1779] \})
foods, cost $=$ multidict $(\{$
'hamburger': 2.49,
'chicken': 2.89,
'hot dog': 1.50,
'fries': 1.89,
'macaroni': 2.09,
'pizza': 1.99,
'salad': 2.49,
'milk': 0.89,
'ice cream': 1.59 \})

```
# Nutrition values for the foods
nutritionValues = {
    ('hamburger', 'calories'): 410,
    ('hamburger', 'protein'): 24,
    ('hamburger', 'fat'): 26,
    ('hamburger', 'sodium'): 730,
    ('chicken', 'calories'): 420,
    ('chicken', 'protein'): 32,
    ('chicken', 'fat'): 10,
    ('chicken', 'sodium'): 1190,
    ('hot dog','calories'): 560,
    ('hot dog', 'protein'): 20,
    ('hot dog', 'fat'): 32,
    ('hot dog', 'sodium'): 1800,
    ('fries', 'calories'): 380,
    ('fries', 'protein'): 4,
    ('fries', 'fat'): 19,
    ('fries', 'sodium'): 270,
    ('macaroni', 'calories'): 320,
    ('macaroni', 'protein'): 12,
    ('macaroni', 'fat'): 10,
    ('macaroni', 'sodium'): 930,
    ('pizza', 'calories'): 320,
    ('pizza', 'protein'): 15,
    ('pizza', 'fat'): 12,
    ('pizza', 'sodium'): 820,
    ('salad', 'calories'): 320,
    ('salad', 'protein'): 31,
```

```
# Model diet.py
m = Model("diet")
# Create decision variables for the foods to buy
buy = {}
for f in foods:
    buy[f] = m.addVar(obj=cost[f], name=f)
# The objective is to minimize the costs
m}.\mathrm{ modeISense = GRB.MINIMIZE
# Update model to integrate new variables
m.update()
# Nutrition constraints
for c in categories:
    m.addConstr(
        quicksum(nutritionValues[f,c] * buy[f] for f in foods) <= maxNutrition[c], name=c+'max')
    m.addConstr(
    quicksum(nutritionValues[f,c] * buy[f] for f in foods) >= minNutrition[c], name=c+'min')
# Solve
m.optimize()
```


Outline

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP Gaussian Elimination

History of Linear Programming (LP)

\rightsquigarrow It is impossible to find out who knew what when first. Just two "references":

- Egyptians and Babylonians considered about 2000 B.C. the solution of special linear equations. But, of course, they described examples and did not describe the methods in "today's style".
- What we call "Gaussian elimination"today has been explicitly described in Chinese "Nine Books of Arithmetic"which is a compendium written in the period 2010 B.C. to A.D. 9, but the methods were probably known long before that.
- Gauss, by the way, never described "Gaussian elimination". He just used it and stated that the linear equations he used can be solved "per eliminationem vulgarem"

History of Linear Programming (LP)

- Origins date back to Newton, Leibnitz, Lagrange, etc.
- In 1827, Fourier described a variable elimination method for systems of linear inequalities, today often called Fourier-Moutzkin elimination (Motzkin, 1937). It can be turned into an LP solver but inefficient.
- In 1932, Leontief (1905-1999) Input-Output model to represent interdependencies between branches of a national economy (1976 Nobel prize)
- In 1939, Kantorovich (1912-1986): Foundations of linear programming (Nobel prize in economics with Koopmans on LP, 1975) on Optimal use of scarce resources: foundation and economic interpretation of LP
- The math subfield of Linear Programming was created by George Dantzig, John von Neumann (Princeton), and Leonid Kantorovich in the 1940s.
- In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm working for the US Air Force at the Pentagon. (program=plan)

History of LP (cntd)

- In 1954, Lemke: dual simplex algorithm, In 1954, Dantzig and Orchard Hays: revised simplex algorithm
- In 1970, Victor Klee and George Minty created an example that showed that the classical simplex algorithm has exponential worst-case behavior.
- In 1979, L. Khachain found a new efficient algorithm for linear programming. It was terribly slow. (Ellipsoid method)
- In 1984, Karmarkar discovered yet another new efficient algorithm for linear programming. It proved to be a strong competitor for the simplex method. (Interior point method)

History of Optimization

- In 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker Conditions
- In 1952, Commercial Applications and Software began
- In 1950s, Network Flow Theory began with the work of Ford and Fulkerson.
- In 1955, Stochastic Programming began
- In 1958, Integer Programming began by R. E. Gomory.
- In 1962, Complementary Pivot Theory

2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP Gaussian Elimination

Fourier Motzkin elimination method

Has $A x \leq b$ a solution? (Assumption: $A \in \mathbb{Q}^{m \times n}, \mathbf{b} \in \mathbb{Q}^{n}$)
Idea:

1. transform the system into another by eliminating some variables such that the two systems have the same solutions over the remaining variables.
2. reduce to a system of constant inequalities that can be easily decided

Let x_{r} be the variable to eliminate
Let $M=\{1 \ldots m\}$ index the constraints
For a variable j let partition the rows of the matrix in

$$
\begin{aligned}
& N=\left\{i \in M \mid a_{i j}<0\right\} \\
& Z=\left\{i \in M \mid a_{i j}=0\right\} \\
& P=\left\{i \in M \mid a_{i j}>0\right\}
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ x _ { r } \geq b _ { i r } ^ { \prime } - \sum _ { k = 1 } ^ { r - 1 } a _ { i k } ^ { \prime } x _ { k } , \quad a _ { i r } < 0 } \\
{ x _ { r } \leq b _ { i r } ^ { \prime } - \sum _ { k = 1 } ^ { r - 1 } a _ { i k } ^ { \prime } x _ { k } , \quad a _ { i r } > 0 } \\
{ \text { all other constraints } \quad i \in Z }
\end{array} \quad \left\{\begin{array}{l}
x_{r} \geq A_{i}\left(x_{1}, \ldots, x_{r-1}\right), \quad i \in N \\
x_{r} \leq B_{i}\left(x_{1}, \ldots, x_{r-1}\right), \quad i \in P \\
\text { all other constraints } \quad i \in Z
\end{array}\right.\right.
$$

Hence the original system is equivalent to

$$
\left\{\begin{array}{l}
\max \left\{A_{i}\left(x_{1}, \ldots, x_{r-1}\right), i \in N\right\} \leq x_{r} \leq \min \left\{B_{i}\left(x_{1}, \ldots, x_{r-1}\right), i \in P\right\} \\
\text { all other constraints } \quad i \in Z
\end{array}\right.
$$

which is equivalent to

$$
\left\{\begin{array}{l}
A_{i}\left(x_{1}, \ldots, x_{r-1}\right) \leq B_{j}\left(x_{1}, \ldots, x_{r-1}\right) \quad i \in N, j \in P \\
\text { all other constraints } \quad i \in Z
\end{array}\right.
$$

we eliminated x_{r} but:

$$
\left\{\begin{array}{l}
|N| \cdot|P| \text { inequalities } \\
|Z| \text { inequalities }
\end{array}\right.
$$

after d iterations if $|P|=|N|=m / 2$ exponential growth: $\left(1 / 2^{d}\right)(m / 2)^{2^{d}}$

$$
\begin{aligned}
-7 x_{1}+6 x_{2} & \leq 25 \\
x_{1}-5 x_{2} & \leq 1 \\
x_{1} & \leq 7 \\
-x_{1}+2 x_{2} & \leq 12 \\
-x_{1}-3 x_{2} & \leq 1 \\
2 x_{1}-x_{2} & \leq 10
\end{aligned}
$$

x_{2} variable to eliminate
$N=\{2,5,6\}, Z=\{3\}, P=\{1,4\}$
$|Z \cup(N \times P)|=7$ constraints
By adding one variable and one inequality, Fourier-Motzkin elimination can be turned into an LP solver.

Outline

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP Gaussian Elimination

Definitions

- \mathbb{R} : set of real numbers
$\mathbb{N}=\{1,2,3,4, \ldots\}$: set of natural numbers (positive integers)
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$: set of all integers
$\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}:$ set of rational numbers
- column vector and matrices
scalar product: $\boldsymbol{y}^{\boldsymbol{T}} \mathbf{x}=\sum_{i=1}^{n} y_{i} x_{i}$
- linear combination

$$
\lambda=\begin{gathered}
\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n} \\
{\left[\lambda_{1}, \ldots, \lambda_{k}\right]^{T} \in \mathbb{R}^{k}}
\end{gathered} \quad \mathbf{x}=\lambda_{1} \mathbf{v}_{1}+\cdots+\lambda_{k} \mathbf{v}_{k}=\sum_{i=1}^{k} \lambda_{i} \mathbf{v}_{i}
$$

moreover:

$$
\begin{array}{lrl}
\lambda \geq \mathbf{0} & & \lambda^{T} \mathbf{1}=1 \\
& =0 & \text { and } \\
\lambda \geq 1 & \lambda^{T} \mathbf{1} & =1
\end{array}
$$

conic combination
affine combination
convex combination

$$
\left(\sum_{i=1}^{k} \lambda_{i}=1\right)
$$

Definitions

- set S is linear (affine) independent if no element of it can be expressed as linear combination of the others
Eg: $S \subseteq \mathbb{R}^{n} \Longrightarrow \max n$ lin. indep. (max $n+1$ aff. indep.)
- convex set: if $\mathbf{x}, \mathbf{y} \in S$ and $0 \leq \lambda \leq 1$ then $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in S$

nonconvex

convex
- convex function if its epigraph $\left\{(x, y) \in \mathbb{R}^{2}: y \geq f(x)\right\}$ is a convex set or $f: X \rightarrow \mathbb{R}$, if $\forall x, y \in X, \lambda \in[0,1]$ it holds that $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$

Definitions

- For a set of points $S \subseteq \mathbb{R}^{n}$
$\operatorname{lin}(S)$ linear hull (span)
$\operatorname{cone}(S)$ conic hull
$\operatorname{aff}(S)$ affine hull
$\operatorname{conv}(S)$ convex hull

$$
\operatorname{conv}(X)=\left\{\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{n} x_{n} \mid x_{i} \in X, \lambda_{1}, \ldots, \lambda_{n} \geq 0 \text { and } \sum_{i} \lambda_{i}=1\right\}
$$

Definitions

- rank of a matrix for columns (= for rows) if (m, n)-matrix has rank $=\min \{m, n\}$ then the matrix is full rank if (n, n)-matrix is full rank then it is regular and admits an inverse
- $G \subseteq \mathbb{R}^{n}$ is an hyperplane if $\exists \mathbf{a} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$:

$$
G=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x}=\alpha\right\}
$$

- $H \subseteq \mathbb{R}^{n}$ is an halfspace if $\exists \mathbf{a} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$:

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{a}^{T} \mathbf{x} \leq \alpha\right\}
$$

($\mathbf{a}^{T} \mathbf{x}=\alpha$ is a supporting hyperplane of H)

Definitions

- a set $S \subset \mathbb{R}^{n}$ is a polyhedron if $\exists m \in \mathbb{Z}^{+}, A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$:

$$
P=\{\mathbf{x} \in \mathbb{R} \mid A \mathbf{x} \leq \mathbf{b}\}=\bigcap_{i=1}^{m}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A_{i} \cdot \mathbf{x} \leq b_{i}\right\}
$$

- a polyhedron P is a polytope if it is bounded: $\exists B \in \mathbb{R}, B>0$:

$$
P \subseteq\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\|\mathbf{x}\| \leq B\right\}
$$

- Theorem: every polyhedron $P \neq \mathbb{R}^{n}$ is determined by finitely many halfspaces

Definitions

- General optimization problem: $\max \{\varphi(\mathbf{x}) \mid \mathbf{x} \in F\}, \quad F$ is feasible region for \mathbf{x}
- Note: if F is open, eg, $x<5$ then: $\sup \{x \mid x<5\}$ sumpreum: least element of \mathbb{R} greater or equal than any element in F
- If A and \mathbf{b} are made of rational numbers, $P=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x} \leq \mathbf{b}\right\}$ is a rational polyhedron

Definitions

- The inequality denoted by (\mathbf{a}, α) is called a valid inequality for P if ax $\leq \alpha, \forall x \in P$.
Note that (\mathbf{a}, α) is a valid inequality if and only if P lies in the half-space $\left\{x \in \mathbb{R}^{n} \mid\right.$ ax $\left.\leq \alpha\right\}$.
- A face of P is $F=\{\mathbf{x} \in P \mid \mathbf{a x}=\alpha\}$ where (\mathbf{a}, α) is a valid inequality for P. Hence, it is the intersection of P with the hyperplane of a valid inequality. It is said to be proper if $F \neq \emptyset$ and $F \neq P$.
- If $F \neq$ we say that it supports P.
- A point \mathbf{x} for which $\{\mathbf{x}\}$ is a face is called a vertex of P and also a basic solution of $A \mathbf{x} \leq \mathbf{b}$ (0 dim face)
- A facet is a maximal face distinct from P $\mathbf{c x} \leq \mathbf{d}$ is facet defining if $\mathbf{c x}=\mathbf{d}$ is a supporting hyperplane of P ($n-1$ dim face)

Linear Programming Problem

Input: a matrix $A \in \mathbb{R}^{m \times n}$ and column vectors $\mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{n}$

Task:

1. decide that $\left\{\mathbf{x} \in \mathbb{R}^{n} ; A \mathbf{x} \leq \mathbf{b}\right\}$ is empty (prob. infeasible), or
2. find a column vector $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x} \leq \mathbf{b}$ and $\mathbf{c}^{T} \mathbf{x}$ is max, or
3. decide that for all $\alpha \in \mathbb{R}$ there is an $\mathbf{x} \in \mathbb{R}^{n}$ with $A \mathbf{x} \leq \mathbf{b}$ and $\mathbf{c}^{T} \mathbf{x}>\alpha$ (prob. unbounded)
4. $F=\emptyset$
5. $F \neq \emptyset$ and \exists solution
6. one solution
7. infinite solution
8. $F \neq \emptyset$ and \nexists solution

- Linear algebra: linear equations (Gaussian elimination)
- Integer linear algebra: linear diophantine equations
- Linear programming: linear inequalities (simplex method)
- Integer linear programming: linear diophantine inequalities

Outline

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP
Gaussian Elimination

Fundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)
Given:

$$
\min \left\{\mathbf{c}^{T} \mathbf{x} \mid \mathbf{x} \in P\right\} \text { where } P=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x} \leq \mathbf{b}\right\}
$$

If P is a bounded polyhedron and not empty and x^{*} is an optimal solution to the problem, then:

- x^{*} is an extreme point (vertex) of P, or
- x^{*} lies on a face $F \subset P$ of optimal solution

Proof idea:

- assume x^{*} not a vertex of P then \exists a ball around it still in P. Show that a point in the ball has better cost
- if x^{*} is not a vertex then it is a convex combination of vertices. Show that all points are also optimal.

Implications:

- the optimal solution is at the intersection of hyperplanes supporting halfspaces.
- hence finitely many possibilities
- Solution method: write all inequalities as equalities and solve all $\binom{n}{m}$ systems of linear equalities ($n \#$ variables, m \# equality constraints)
- for each point we then need to check if feasible and if best in cost.
- each system is solved by Gaussian elimination
- Stirling approximation:

$$
\binom{2 m}{m} \approx \frac{4^{m}}{\sqrt{\pi m}} \text { as } m \rightarrow \infty
$$

Simplex Method

1. find a solution that is at the intersection of some n hyperplanes
2. try systematically to produce the other points by exchanging one hyperplane with another
3. check optimality, proof provided by duality theory
```
number of corners 
    coefficient a }
    coefficient b = =
value of obj. func.
    random seed
        ##
```

 Maximum value: 79.396
 Minimum value: -73.3128
 \(9 x+3 y=5\)

Outline

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP
Gaussian Elimination

Gaussian Elimination

1. Forward elimination
reduces the system to row echelon form by elementary row operations

- multiply a row by a non-zero constant
- interchange two rows
- add a multiple of one row to anothe
(or LU decomposition)

2. Back substitution (or reduced row echelon form - RREF)

Example

$$
\begin{array}{rlr}
2 x+y-z= & 8 & (R 1) \\
-3 x-y+2 z= & -11 & (R 2) \\
-2 x+y+2 z= & (R 3) \\
& & \\
2 x+y-z=8 & (R 1) \\
+\frac{1}{2} y+\frac{1}{2} z=1 & (R 2) \\
+2 y+1 z= & (R 3) \\
2 x+y-z=8 & (R 1) \\
+\frac{1}{2} y+\frac{1}{2} z=1 & (R 2) \\
-z=1 & (R 3) \\
2 x+y-z=8 & (R 1) \\
+\frac{1}{2} y+\frac{1}{2} z=1 & (R 2) \\
-z=1 & (R 3) \\
= & & (R 1) \\
x=3 & (R 2) & \\
x=-1 & (R 3) &
\end{array}
$$

In Python

```
In [105]: import sympy as sy
    Ab=sy.Matrix([[ 2, 1, -1, 8],
        [-3,-1, 2, -11],
        [-2, 1, 2, -3]])
    Ab.rref()
Out[105]: (Matrix([
    [1, 0, 0, 2],
    [0, 1, 0, 3],
    [0, 0, 1, -1]]), [0, 1, 2])
```

reduced row-echelon form of matrix and indices of pivot vars

LU Factorization

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
8 \\
-11 \\
-3
\end{array}\right]}
\end{array} \begin{array}{l}
A \mathbf{x}=\mathbf{b} \\
\mathbf{x}=A^{-1} \mathbf{b}
\end{array}\right] \begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
I_{21} & 1 & 0 \\
l_{31} & I_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] \begin{aligned}
& A=P L U \\
& \mathbf{x}=A^{-1} \mathbf{b}=U^{-1} L^{-1} P^{T} \mathbf{b} \\
& \mathbf{z}_{1}=P^{T} \mathbf{b}, \quad \mathbf{z}_{2}=L^{-1} \mathbf{z}_{1}, \quad \mathbf{x}=U^{-1} \mathbf{z}_{2}
\end{aligned}
$$

```
In [117]: Ab[:,0:3].LUdecomposition()
```

Out[117]: (Matrix([
[1, 0, 0],
$[-3 / 2,1,0]$,
[$-1,4,1]])$,
Matrix([
$[2,1,-1]$,
[0, 1/2, 1/2],
$[0, ~ 0, ~-1]])$,
[])

Polynomial time $O\left(n^{2} m\right)$ but needs to guarantee that all the numbers during the run can be represented by polynomially bounded bits

Summary

1. Introduction

Diet Problem
2. Solving LP Problems

Fourier-Motzkin method
3. Preliminaries

Fundamental Theorem of LP
Gaussian Elimination

