DM559
 Linear and Integer Programming

Lecture 3
 Matrices and Vectors: Geometric Insight

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Geometric Insight
2. Linear Systems

Outline

1. Geometric Insight
2. Linear Systems

Geometric Insight

- Set \mathbb{R} can be represented by real-number line. Set \mathbb{R}^{2} of real number pairs (a_{1}, a_{2}) can be represented by the Cartesian plane.
- To a point in the plane $A=\left(a_{1}, a_{2}\right)$ it is associated a position vector $\mathbf{a}=\left(a_{1}, a_{2}\right)^{T}$, representing the displacement from the origin $(0,0)$.

- Two displacement vectors of same length and direction are considered to be equal even if they do not both start from the origin
- If object displaced from O to P by displacement p and from P to Q by displacement \mathbf{v}, then the total displacement satisfies $\mathbf{q}=\mathbf{p}+\mathbf{v}=\mathbf{v}+\mathbf{q}$

- $\mathbf{v}=\mathbf{q}-\mathbf{p}$, think of \mathbf{v} as the vector that is added to \mathbf{p} to obtain \mathbf{q}.
- the length of a vector $\mathbf{a}=\left(a_{1}, a_{2}\right)^{T}$ is denoted by $\|\mathbf{a}\|$ and from Pythagoras

$$
\|\mathbf{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}}=\sqrt{\langle\mathbf{a}, \mathbf{a}\rangle}
$$

- the direction is given by the components of the vector
- the unit vector can be derived by normalizing it, that is:

$$
\mathbf{u}=\frac{1}{\|\mathbf{v}\|} \mathbf{v}
$$

Theorem (Inner Product)
Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$ and let θ denote the angle between them. Then (from the law of cosines),

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

Two vectors \mathbf{a} and \mathbf{b} are orthogonal (or normal or perpendicular) if and only if $\langle\mathbf{a}, \mathbf{b}\rangle=0$.

Vectors in \mathbb{R}^{3}

Geometric Insight Linear Systems

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \quad\|\mathbf{a}\|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \\
& \langle\mathbf{a}, \mathbf{b}\rangle=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
\end{aligned}
$$

Lines in \mathbb{R}^{2}

- Cartesian equation of a line: $y=a x+b$
- another way is by giving position vectors. We can let $x=t$ where t is any real number. Then $y=a x+b=a t+b$. Hence the position vector $\mathbf{x}=(x, y)^{T}$

$$
\mathbf{x}=\left[\begin{array}{c}
t \\
a t+b
\end{array}\right]=t\left[\begin{array}{l}
1 \\
a
\end{array}\right]+\left[\begin{array}{l}
0 \\
b
\end{array}\right]=t \mathbf{v}+(0, b)^{T}, \quad t \in \mathbb{R}
$$

- To derive the Cartesian equation: locate one particular point on the line, eg, the y intercept. Then the position vector of any point on the line is a sum of two displacements, first going to the point and then along the direction of the line. Try with $P=(-1,1)$ and $Q=(3,2)$
- In general, any line in \mathbb{R}^{2} is given by a vector equation with one parameter of the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

where x is the position vector, p is any particular point and v is the direction of the line

Lines in \mathbb{R}^{3}

$$
\begin{aligned}
& \mathbf{x}=\mathbf{p}+t \mathbf{v} \\
& \mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]+t\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \\
& \mathbf{x}=\left[\begin{array}{l}
3 \\
7 \\
2
\end{array}\right]+s\left[\begin{array}{c}
-3 \\
-6 \\
3
\end{array}\right], \quad s, t \in \mathbb{R}
\end{aligned}
$$

Are these lines intersecting?
What is the Cartesian equation of the first?
$\ln \mathbb{R}^{2}$, two lines are:

- parallel
- intersecting in a unique point

In \mathbb{R}^{3}, two lines are:

- parallel
- intersecting in a unique point
- skew (lay on two parallel planes)

What about these lines? Do they intersect? Are they coplanar?

$$
\begin{aligned}
& L_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]+t\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \\
& L_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
1 \\
7
\end{array}\right]
\end{aligned}
$$

Planes in \mathbb{R}^{3}

Vector parametric equation:

- The position of vectors of points on a plane is described by:

$$
\mathbf{x}=\mathbf{p}+s \mathbf{v}+t \mathbf{w}, \quad s, t \in \mathbb{R}
$$

provided v and w are non-zero and not parallel.
(p position vector, v and w displacement vectors).

- How is the plane through the origin? What if v and w are parallel?
- Two intersecting lines determine a plane. What is its description?

Geometric Insight

Linear Systems

Alternative Description of Planes

Cartesian equation:

- Let \mathbf{n} be a given vector in \mathbb{R}^{3}. All positions represented by postion vectors x that are orthogonal to n describe a plane through the origin. (n is called a normal vector to the plane)
- Vectors \mathbf{n} and x are orthogonal iff

$$
\langle\mathbf{n}, \mathbf{x}\rangle=0,
$$

hence this equation describes a plane.
If $\mathbf{n}=(a, b, c)^{T}$ and $\mathbf{x}=(x, y, z)^{T}$, then the equation becomes:

$$
a x+b y+c z=0
$$

Geometric Insight

Linear Systems

- For a point P on the plane with position vector p and a position vector x of any other point on the plane, the displacement vector $\mathbf{x}-\mathrm{p}$ lies on the plane and $\mathbf{n} \perp \mathbf{x}-\mathbf{p}$
- Conversely, if the position vector x of a point is such that

$$
\langle\mathbf{n}, \mathbf{x}-\mathbf{p}\rangle=0
$$

then the point represented by x lies on the plane.

- hence, $\langle\mathbf{n}, \mathbf{x}\rangle=\langle\mathbf{n}, \mathbf{p}\rangle=d$ and the equation becomes:

$$
a x+b y+c z=d
$$

Eg.: $2 x-3 y-5 z=2$ has $\mathbf{n}=(2,-3,-5)^{\top}$ and passes through $(0,0, e)$

Vector parametric equation \Longleftrightarrow Cartesian equation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
7
\end{array}\right]=s \mathbf{v}+t \mathbf{w}, \quad s, t \in \mathbb{R}} \\
& 3 x-y+z=0, \quad \mathbf{n}=\left[\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

$$
\langle\mathbf{n}, \mathbf{v}\rangle=0,\langle\mathbf{n}, \mathbf{w}\rangle=0 \text { and }\langle\mathbf{n}, s \mathbf{v}+t \mathbf{w}\rangle=0 \text { for } s, t \in \mathbb{R}
$$

What will change if the plane does not pass through the origin?

Are the two following planes parallel?

$$
x+2 y-3 x=0 \text { and }-2 x-4 y+6 z=4
$$

and these?

$$
x+2 y-3 x=0 \text { and } x-2 y+5 z=4
$$

Lines and Hyperplanes in \mathbb{R}^{n}

- Point in $\mathbb{R}^{n}: \mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$
- Length of a vector $\mathbf{x}=\left(x_{,}, x_{2}, \ldots, x_{n}\right)^{T}$

$$
\|\mathbf{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} .
$$

- The vectors in \mathbb{R}^{n} are orthogonal iff

$$
\langle\mathbf{v}, \mathbf{w}\rangle=0
$$

- Line:

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}, \quad t \in \mathbb{R}
$$

How many Cartesian equations?

- The set of points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that satisfy a Cartesian equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=d
$$

is called hyperplane. $(\langle\mathbf{n}, \mathbf{x}-\mathbf{p}\rangle=0$.) What is the vector equation?

Outline

1. Geometric Insight

2. Linear Systems

Systems of Linear Equations

Definition (System of linear equations, aka linear system)
A system of m linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ is a set of m equations of the form

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

The numbers $a_{i j}$ are known as the coefficients of the system.
We say that $s_{1}, s_{2}, \ldots, s_{n}$ is a solution of the system if all m equations hold true when

$$
x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}
$$

Examples

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=3 \\
2 x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=4 \\
x_{1}-x_{2}-x_{3}+x_{4}+x_{5}=5 \\
x_{1}
\end{array}
$$

has solution

$$
x_{1}=-1, x_{2}=-2, x_{3}=1, x_{4}=3, x_{5}=2
$$

Is it the only one?

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=3 \\
2 x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}=4 \\
x_{1}-x_{2}-x_{3}+x_{4}+x_{5}=5 \\
x_{1}
\end{array}
$$

has no solutions

Definition (Coefficient Matrix)
The matrix $A=\left(a_{i j}\right)$, whose (i, j) entry is the coefficient $a_{i j}$ of the system of linear equations is called the coefficient matrix.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Let $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ then

$$
\begin{aligned}
& m \times n \\
& n \times 1 \\
& n \times 1 \\
& {\left[\begin{array}{rrrr}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right]}
\end{aligned}
$$

hence, the linear system can be written also as $A \mathbf{x}=\mathbf{b}$

Row operations

How do we find solutions?

$$
\begin{array}{l:r}
\mathrm{R} 1: & x_{1}+x_{2}+x_{3}=3 \\
\mathrm{R} 2: & 2 x_{1}+x_{2}+x_{3}=4 \\
\mathrm{R} 3: & x_{1}-x_{2}+2 x_{3}=5
\end{array}
$$

Eliminate one of the variables from two of the equations

$$
\begin{array}{l:rr}
\text { R1' }^{\prime}=\mathrm{R} 1: & x_{1}+x_{2}+x_{3}= & 3 \\
\mathrm{R}^{\prime}=\mathrm{R} 2-2 * \mathrm{R} 1: & -x_{2}-x_{3}= & -2 \\
\mathrm{R}^{\prime}=\mathrm{R} 3: & x_{1}-x_{2}+2 x_{3}= & 5 \\
& \\
\mathrm{R}^{\prime}=\mathrm{R} 1: & x_{1}+x_{2}+x_{3}= & 3 \\
\mathrm{R}^{\prime}=\mathrm{R} 2: & -x_{2}-x_{3}= & -2 \\
\mathrm{R}^{\prime}=\mathrm{R} 3-\mathrm{R} 1: & -2 x_{2}+x_{3}= & 2
\end{array}
$$

We can now eliminate one of the variables in the last two equations to obtain the solution

Row operations that do not alter solutions:
O1: multiply both sides of an equation by a non-zero constant
O2: interchange two equations
O3: add a multiple of one equation to another

These operations only act on the coefficients of the system For a system $A \mathbf{x}=\mathbf{b}$:

$$
[A \mid \mathbf{b}]=\left[\begin{array}{cccc}
1 & 1 & 1 & 3 \\
2 & 1 & 1 & 4 \\
1 & -1 & 2 & 5
\end{array}\right]
$$

Augmented Matrix

Definition (Augmented Matrix and Elementary row operations)
For a system of linear equations $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

the augmented matrix of the system and the row operations are:

$$
[A \mid \mathbf{b}]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

RO1: multiply a row by a non-zero constant
RO2: interchange two rows
RO3: add a multiple of one row to another

