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Rank
Range
Vector SpacesRank

• Synthesis of what we have seen so far under the light of two new
concepts: rank and range of a matrix

• We saw that:
every matrix is row-equivalent to a matrix in reduced row echelon form.

Definition (Rank of Matrix)

The rank of a matrix A, rank(A), is
• the number of non-zero rows, or equivalently
• the number of leading ones

in a row echelon matrix obtained from A by elementary row operations.

 For an m × n matrix A,

rankA ≤ min{m, n},

where min{m, n} denotes the smaller of the two integers m and n.

6



Rank
Range
Vector Spaces

Example

M =

1 2 1 1
2 3 0 5
3 5 1 6



1 2 1 1
2 3 0 5
3 5 1 6

 R′
2=R2−2R1

R′
3=R3−3R1−−−−−−−→

1 2 1 1
0 −1 −2 3
0 −1 −2 3

 R′
2=−R2

R′
3=R3−R2−−−−−−−→

1 2 1 1
0 1 2 −3
0 0 0 0



 rank(M) = 2
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Range
Vector SpacesExtension of the main theorem

Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

6. the rank of A is n
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Vector SpacesRank and Systems of Linear Equations

x + 2y + z = 1
2x + 3y = 5
3x + 5y + z = 4 1 2 1 1
2 3 0 5
3 5 1 4

 R′
2=R2−2R1

R′
3=R3−3R1−−−−−−−→

 1 2 1 1
0 −1 −2 3
0 −1 −2 1

 R′
2=−R2

R′
3=R3−R2−−−−−−−→

 1 2 1 1
0 1 2 −3
0 0 0 −2


x + 2y + z = 1

x + 2z = −3
0x + 0y + 0z = −2

It is inconsistent!

The last row is of the type
0 = a, a 6= 0, that is, the augmenting
matrix has a leading one in the last
column
rank(A) = 2 6= rank(A | b) = 3

1. A system Ax = b is consistent if and only if the rank of the augmented
matrix is precisely the same as the rank of the matrix A.
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2. If an m × n matrix A has rank m, the system of linear equations,
Ax = b, will be consistent for all b ∈ Rn

– Since A has rank m then there is a leading one in every row. Hence
[A | b] cannot have a row [0, 0, . . . , 0, 1] =⇒ rankA 6< rank(A | b)

– [A | b] has also m rows =⇒ rank(A) 6> rank(A | b)
– Hence, rank(A) = rank(A | b)

Example

B =

1 2 1 1
2 3 0 5
3 5 1 4

 → · · · →
1 0 −3 0
0 1 2 0
0 0 0 1

 rank(B) = 3

Any system Bx = d in 4 unknowns and 3 equalities with d ∈ R3 is consistent.

Since rank(A) is smaller than the number of variables, then there is a
non-leading variable. Hence infinitely many solutions!
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[A|b] =


1 3 −2 0 0 0
0 0 1 2 3 1
0 0 0 0 1 5
0 0 0 0 0 0

 → · · · →

1 3 0 4 0 −28
0 0 1 2 0 −14
0 0 0 0 1 5
0 0 0 0 0 0


rank([A|b]) = 3 < 5 = n

x1 + 3x2 + 4x4 = −28
x3 + 2x4 = −14

x5 = 5

x1, x3, x5 are leading variables; x2, x4 are non-leading variables (set them to
s, t ∈ R)

x1 = −28− 3s − 4t
x2 = s
x3 = −14− 2t
x4 = t
x5 = 5

x =


x1
x2
x3
x4
x5

 =


−28
0
−14
0
5

+


−3
1
0
0
0

 s +


−4
0
−2
1
0

 t
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Vector SpacesSummary

Let Ax = b be a general linear system in n variables and m equations:

• If rank(A) = r < m and rank(A | b) = r + 1 then the system is
inconsistent. (the row echelon form of the augmented matrix has a row
[0 0 . . . 0 1])

• If rank(A) = r = rank(A | b) then the system is consistent and there are
n − r free variables;
if r < n there are infinitely many solutions, if r = n there are no free
variables and the solution is unique

Let Ax = 0 be an homogeneous system in n variables and m equations,
rank(A) = r (always consistent):

• if r < n there are infinitely many solutions, if r = n there are no free
variables and the solution is unique, x = 0.
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Range
Vector SpacesGeneral solutions in vector notation

Example

x =


x1
x2
x2
x4
x5

 =


−28
0
−14
0
5

+


−3
1
0
0
0

 s +


−4
0
−2
1
0

 t, ∀s, t ∈ R

For Ax = b:

x = p + α1v1 + α2v2 + · · ·+ αn−rvn−r , ∀αi ∈ R, i = 1, . . . , n − r

Note:
– if αi = 0,∀i = 1, . . . , n − r then Ap = b, ie, p is a particular solution
– if α1 = 1 and αi = 0,∀i = 2, . . . , n − r then

A(p + v1) = b −→ Ap + Av1 = b Ap=b−−−→ Av1 = 0
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Thus (recall that x = p + z, z ∈ N(A)):

• If A is an m × n matrix of rank r , the general solutions of Ax = b is the
sum of:

• a particular solution p of the system Ax = b and

• a linear combination α1v1 + α2v2 + · · ·+ αn−rvn−r of solutions
v1, v2, · · · , vn−r of the homogeneous system Ax = 0

• If A has rank n, then Ax = 0 only has the solution x = 0 and so Ax = b
has a unique solution: p
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Range
Vector SpacesRange

Definition (Range of a matrix)

Let A be an m × n matrix, the range of A, denoted by R(A), is the subset of
Rm given by

R(A) = {Ax | x ∈ Rn}

That is, the range is the set of all vectors y ∈ Rm of the form y = Ax for
some x ∈ Rn, or
all y ∈ Rm for which the system Ax = y is consistent.
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Recall, if x = (α1, α2, . . . , αn)
T is any vector in Rn and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ai =


a1i

a2i
...

ami

 , i = 1, . . . , n.

Then A =
[
a1 a2 · · · an

]
and

Ax = α1a1 + α2a2 + . . .+ αnan

that is, vector Ax in Rn as a linear combination of the column vectors of A
Proof?

Hence R(A) is the set of all linear combinations of the columns of A.
 the range is also called the column space of A:

R(A) = {α1a1 + α2a2 + . . .+ αnan | α1, α2, . . . , αn ∈ R}

Thus, Ax = b is consistent iff b is in the range of A, ie, a linear combination
of the columns of A
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Example

A =

 1 2
−1 3
2 1


Then, for x = [α1, α2]

T

Ax =

 1 2
−1 3
2 1

[α1
α2

]
=

 α1 + 2α2
−α1 + 3α2
2α1 + α2

 =

 1
−1
2

α1 +

23
1

α2

so

R(A) =


 α1 + 2α2
−α1 + 3α2
2α1 + α2

 ∣∣∣∣∣∣ α1, α2 ∈ R
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Example x + 2y = 0
− x + 3y = −5

2x + y = 3

Ax =

 1 2
−1 3
2 1

[ 2
−1

]
=

 0
−5
3


 0
−5
3

 = 2

 1
−1
2

−
23
1

 = 2a1−a2

 x + 2y = 1
− x + 3y = −5

2x + y = 2

Ax = 0

has only the trivial solution x = 0.
(Why?) Only way:

0

 1
−1
2

+ 0

23
1

 = 0a1 + 0a2 = 0

Hence no way to express [1,−5, 2] as
linear expression of the two columns of
A.

19



Rank
Range
Vector SpacesOutline

1. Rank

2. Range

3. Vector Spaces

20



Rank
Range
Vector SpacesPremise

• We move to a higher level of abstraction

• A vector space is a set with an addition and scalar multiplication that
behave appropriately, that is, like Rn

• Imagine a vector space as a class of a generic type (template) in object
oriented programming, equipped with two operations.
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Definition (Vector Space)

A (real) vector space V is a non-empty set equipped with an addition and a
scalar multiplication operation such that for all α, β ∈ R and all u, v,w ∈ V :

1. u + v ∈ V (closure under addition)

2. u + v = v + u (commutative law for addition)

3. u + (v + w) = (u + v) + w (associative law for addition)

4. there is a single member 0 of V , called the zero vector, such that for all
v ∈ V , v + 0 = v

5. for every v ∈ V there is an element w ∈ V , written −v, called the
negative of v, such that v + w = 0

6. αv ∈ V (closure under scalar multiplication)

7. α(u + v) = αu + αv (distributive law)

8. (α+ β)v = αv + βv (distributive law)

9. α(βv) = (αβ)v (associative law for vector multiplication)

10. 1v = v
22
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• set Rn

• but the set of objects for which the vector space defined is valid are
more than the vectors in Rn.

• set of all functions F : R→ R.
We can define an addition f + g :

(f + g)(x) = f (x) + g(x)

and a scalar multiplication αf :

(αf )(x) = αf (x)

• Example: x + x2 and 2x . They can represent the result of the two
operations.

• What is −f ? and the zero vector?
23
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The axioms given are minimum number needed.
Other properties can be derived:
For example:

(−1)x = −x

0 = 0x = (1+ (−1))x = 1x + (−1)x = x + (−1)x

Adding −x on both sides:

− x = − x− 0 = −x + x + (−1)x = (−1)x

which proves that −x = (−1)x.

Try the same with −f .
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• V = {0}

• the set of m × n all matrices

• the set of all infinite sequences of real numbers,
y = {y1, y2, . . . , yn, . . . , }, yi ∈ R. (y = {yn}, n ≥ 1)

addition of y = {y1, y2, . . . , yn, . . . , } and z = {z1, z2, . . . , zn, . . . , } then:

y + z = {y1 + z1, y2 + z2, . . . , yn + zn, . . . , }

multiplication by a scalar α ∈ R:

αy = {αy1, αy2, . . . , αyn, . . . , }

• set of all vectors in R3 with the third entry equal to 0 (verify closure):

W =


x

y
0

 ∣∣∣∣∣∣ x , y ∈ R
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Definition (Linear Combination)

For vectors v1, v2, . . . , vk in a vector space V , the vector

v = α1v1 + α2v2 + . . .+ αkvk

is called a linear combination of the vectors v1, v2, . . . , vk .
The scalars αi are called coefficients.

• To find the coefficients that given a set of vertices express by linear
combination a given vector, we solve a system of linear equations.

• If F is the vector space of functions from R to R then the function
f : x 7→ 2x2 + 3x + 4 can be expressed as a linear combination of:

f = 2g + 3h + 4k

where g : x 7→ x2, h : x 7→ x , k : x 7→ 1

• Given two vectors v1 and v2, is it possible to represent any point in the
Cartesian plane?
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Definition (Subspace)

A subspace W of a vector space V is a non-empty subset of V that is itself a
vector space under the same operations of addition and scalar multiplication
as V .

Theorem
Let V be a vector space. Then a non-empty subset W of V is a subspace if
and only if both the following hold:

• for all u, v ∈W, u + v ∈W
(W is closed under addition)

• for all v ∈W and α ∈ R, αv ∈W
(W is closed under scalar multiplication)

ie, all other axioms can be derived to hold true
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Example

• The set of all vectors in R3 with the third entry equal to 0.

• The set {0} is not empty, it is a subspace since 0 + 0 = 0 and α0 = 0
for any α ∈ R.

Example

In R2, the lines y = 2x and y = 2x + 1 can be defined as the sets of vectors:

S =

{[
x
y

] ∣∣∣∣ y = 2x , x ∈ R
}

U =

{[
x
y

] ∣∣∣∣ y = 2x + 1, x ∈ R
}

S = {x | x = tv, t ∈ R} U = {x | x = p + tv, t ∈ R}

v =

[
1
2

]
, p =

[
0
1

]
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Example (cntd)

1. The set S is non-empty, since 0 = 0v ∈ S .
2. closure under addition:

u = s
[
1
2

]
∈ S , w = t

[
1
2

]
∈ S , for some s, t ∈ R

u + w = sv + tv = (s + t)v ∈ S since s + t ∈ R
3. closure under scalar multiplication:

u = s
[
1
2

]
∈ S for some s ∈ R, α ∈ R

αu = α(s(v)) = (αs)v ∈ S since αs ∈ R

Note that:

• u,w and α ∈ R must be arbitrary
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Example (cntd)

1. 0 6∈ U
2. U is not closed under addition:[

0
1

]
∈ U,

[
1
3

]
∈ U but

[
0
1

]
+

[
1
3

]
=

[
1
4

]
6∈ U

3. U is not closed under scalar multiplication[
0
1

]
∈ U, 2 ∈ R but 2

[
0
1

]
=

[
0
2

]
6∈ U

Note that:

• proving just one of the above couterexamples is enough to show that U
is not a subspace

• it is sufficient to make them fail for particular choices

• a good place to start is checking whether 0 ∈ S . If not then S is not a
subspace 30
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Geometric interpretation:

u

w

(0, 0)
x

y

u

w

(0, 0)
x

y

 The line y = 2x + 1 is an affine subset, a „translation“ of a subspace
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Theorem
A non-empty subset W of a vector space is a subspace if and only if for all
u, v ∈W and all α, β ∈ R, we have αu + βv ∈W.
That is, W is closed under linear combination.
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Vector SpacesSummary

• Rank of a matrix and relation to number of solutions of a linear system

• General solutions of a linear system in vector notation

• Range, set of linear combinations of the columns of a matrix

• Vector spaces: properties

• Linear combination

• Subspaces: non-empty + closed under linear combination

33


	Rank
	Range
	Vector Spaces

