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Week 9:
Section H1:

Today, Introductory class
Tomorrow, 14-16, Applications
Thursday, 12-14, Introductory class

Section H2:

Today, Introductory class
Tomorrow, 12-14, Introductory class
Tomorrow, 14-16, Applications
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Week 10:
Section H1:

Tuesday, 14-16, Exercise class
Wednesday, 10-12, Laboratory class
Thursday, 12-14, Exercise class

Section H2:

Tuesday, 14-16, Exercise class
Thursday, 10-12, Exercise class
Friday, 08-10, Laboratory class

a) Join? H1, Thursday, 12-14 ⇐⇒ H2, Thursday, 10-12

1. Move H1 from Thursday, 12-14 to Thursday, 10-12?
2. Move H2 from Thursday, 10-12 to Thursday, 12-14? 4

b) Join? H1, Wednesday, 10-12 ⇐⇒ H2, Friday, 08-10

1. Move H1 from Wednesday, 10-12 to Friday, 08-10?
2. Move H2 from Friday, 08-10 to Wednesday, 10-12? 4
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• Matrix Calculus

• Geometric Insight

• Systems of Linear Equations. Gaussian Elimination.

• Elementary Matrices, Determinants, Matrix Inverse.

Last Time:

• Rank (number of leading ones in REF)
Relationship with linear systems

• (Numerical methods, LU + iterative)

• Range of a matrix

• Vector Spaces: Definition, Examples. Linear combination.

• Subspaces
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1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension

5



Vector Spaces (cntd)
Linear independence
Bases
DimensionOutline

1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension
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• If v = α1v1 + α2v2 + . . .+ αkvk and w = β1v1 + β2v2 + . . .+ βkvk ,
then v + w and sv, s ∈ R are also linear combinations of the vectors
v1, v2, . . . , vk .

• The set of all linear combinations of a given set of vectors of a vector
space V forms a subspace:

Definition (Linear span)

Let V be a vector space and v1, v2, . . . , vk ∈ V . The linear span of
X = {v1, v2, . . . , vk} is the set of all linear combinations of the vectors
v1, v2, . . . , vk , denoted by Lin(X ), that is:

Lin({v1, v2, . . . , vk}) = {α1v1 +α2v2 + . . .+αkvk | α1, α2, . . . , αk ∈ R}

Theorem

If X = {v1, v2, . . . , vk} is a set of vectors of a vector space V , then Lin(X ) is
a subspace of V and is also called the subspace spanned by X .
It is the smallest subspace containing the vectors v1, v2, . . . , vk .
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Example

• Lin({v}) = {αv | α ∈ R} defines a line in Rn.

• Recall that a plane in R3 has two equivalent representations:

ax + by + cz = d and x = p + sv + tw, s, t ∈ R

where v and w are non parallel.

– If d = 0 and p = 0, then

{x | x = sv + tw, s, t,∈ R} = Lin({v,w})

and hence a subspace of Rn.

– If d 6= 0, then the plane is not a subspace. It is an affine subset, a
translation of a subspace.

(recall that one can also show directly that a subset is a subspace or not)
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1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension
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Definition (Linear Independence)

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk are
linearly independent (or form a linearly independent set) if and only if the
vector equation

α1v1 + α2v2 + · · ·+ αkvk = 0

has the unique solution

α1 = α2 = · · · = αk = 0

Definition (Linear Dependence)

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk are
linearly dependent (or form a linearly dependent set) if and only if there are
real numbers α1, α2, · · · , αk , not all zero, such that

α1v1 + α2v2 + · · ·+ αkvk = 0
15



Example

In R2, the vectors

v =

[
1
2

]
and w =

[
1
−1

]
are linearly independent. Indeed:

α

[
1
2

]
+ β

[
1
−1

]
=

[
0
0

]
=⇒

{
α + β = 0
2α − β = 0

The homogeneous linear system has only the trivial solution, α = 0, β = 0,
so linear independence.

Example

In R3, the following vectors are linearly dependent:

v1 =

12
3

 , v2 =

21
5

 , v3 =

 4
5
11


Indeed: 2v1 + v2 + v3 = 0
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Theorem

The set {v1, v2, . . . , vk} ⊆ V is linearly dependent if and only if at least one
vector vi is a linear combination of the other vectors.

Proof
=⇒
If {v1, v2, . . . , vk} are linearly dependent then

α1v1 + α2v2 + · · ·+ αkvk = 0

has a solution with some αi 6= 0, then:

vi = −
α1

αi
v1 −

α2

αi
v2 − · · · −

αi−1

αi
vi−1 −

αi+1

αi
vi+1 + · · · −

αk

αi
vk

which is a linear combination of the other vectors
⇐=
If vi is a lin combination of the other vectors, eg,

vi = β1v1 + · · ·+ βi−1vi−1 + βi+1vi+1 + · · ·+ βkvk

then

β1v1 + · · ·+ βi−1vi−1 − vi + βi+1vi+1 + · · ·+ βkvk = 0
18
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Corollary

Two vectors are linearly dependent if and only if at least one vector is a scalar
multiple of the other.

Example

v1 =

12
3

 , v2 =

21
5


are linearly independent
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Theorem
In a vector space V , a non-empty set of vectors that contains the zero
vector is linearly dependent.

Proof:

{v1, v2, . . . , vk} ⊂ V

{v1, v2, . . . , vk , 0}

0v1 + 0v2 + . . .+ 0vk + a0 = 0, a 6= 0
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Theorem
If v1, v2, . . . , vk are linearly independent vectors in V and if

a1v1 + a2v2 + . . .+ akvk = b1v1 + b2v2 + . . .+ bkvk

then

a1 = b1, a2 = b2, . . . ak = bk .

• If a vector x can be expressed as a linear combination of linearly
independent vectors, then this can be done in only one way

x = c1v1 + c2v2 + . . .+ ckvk
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For k vectors v1, v2, . . . , vk ∈ Rn

α1v1 + α2v2 + · · ·+ αkvk

is equivalent to

Ax

where A is the n × k matrix whose columns are the vectors v1, v2, . . . , vk and
x = [α1, α2, . . . , αk ]

T :

Theorem
The vectors v1, v2, . . . , vk in Rn are linearly dependent if and only if the
linear system Ax = 0, where A is the matrix A = [v1 v2 · · · vk ], has a
solution other than x = 0.
Equivalently, the vectors are linearly independent precisely when the only
solution to the system is x = 0.

If vectors are linearly dependent, then any solution x 6= 0,
x = [α1, α2. . . . , αk ]

T of Ax = 0 gives a non-trivial linear combination
Ax = α1v1 + α2v2 + . . .+ αkvk = 0
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Example

v1 =

[
1
2

]
, v2 =

[
1
−1

]
, v3 =

[
2
−5

]
are linearly dependent.
We solve Ax = 0

A =

[
1 1 2
2 −1 −5

]
→ · · · →

[
1 0 −1
0 1 3

]
The general solution is

v =

 t
−3t
t


and Ax = tv1 − 3tv2 + tv3 = 0

Hence, for t = 1 we have: 1
[
1
2

]
− 3

[
1
−1

]
+

[
2
−5

]
=

[
0
0

]
23
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Recall that Ax = 0 has precisely one solution x = 0 iff the n × k matrix is
row equiv. to a row echelon matrix with k leading ones, ie, iff rank(A) = k

Theorem

Let v1, v2, . . . , vk ∈ Rn. The set {v1, v2, . . . , vk} is linearly independent iff
the n × k matrix A = [v1 v2 . . . vk ] has rank k.

Theorem
The maximum size of a linearly independent set of vectors in Rn is n.

• rank(A) ≤ min{n, k}, hence rank(A) ≤ n⇒ when lin. indep. k ≤ n.
• we exhibit an example that has exactly n independent vectors in Rn

(there are infinite examples):

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


This is known as the standard basis of Rn. 24
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Example

L1 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1

 ,

0
0
1
0

 ,

2
5
9
1


 lin. dep. since 5 > n = 4

L2 =




1
0
−1
0

 ,

1
2
9
2


 lin. indep.

L3 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1


 lin. dep. since rank(A) = 2

L4 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1

 ,

0
0
1
0


 lin. dep. since L3 ⊆ L4
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Let S = {v1, v2, . . . , vk} be a set of vectors in Rn.
What are the conditions for S to span Rn and be linearly independent?

Let A be the n × k matrix whose columns are the vectors from S .

• S spans Rn if for any v ∈ Rn the linear system Ax = v is consistent.
This happens when rank(A) = n, hence k ≥ n

• S is linearly independent iff the linear system Ax = 0 has a unique
solution. This happens when rank(A) = k, Hence k ≤ n

Hence, to span Rn and to be linearly independent, the set S must have
exactly n vectors and the square matrix A must have det(A) 6= 0

Example

v1 =

12
3

 , v2 =

21
5

 , v3 =

45
1

 |A| =

∣∣∣∣∣∣
1 2 4
2 1 5
3 5 1

∣∣∣∣∣∣ = 30 6= 0
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Definition (Basis)

Let V be a vector space. Then the subset B = {v1, v2, . . . , vn} of V is said
to be a basis for V if:
1. B is a linearly independent set of vectors, and
2. B spans V ; that is, V = Lin(B)

Theorem
If V is a vector space, then a smallest spanning set is a basis of V .

Theorem

B = {v1, v2, . . . , vn} is a basis of V if and only if any v ∈ V is a unique
linear combination of v1, v2, . . . , vn

29



Example

{e1, e2, . . . , en} is the standard basis of Rn.
the vectors are linearly independent and for any x = [x1, x2, . . . , xn]

T ∈ Rn,
x = x1e1 + x2e2 + . . .+ xnen, ie,

x = x1


1
0
...
0

+ x2


0
1
...
0

+ . . .+ xn


0
0
...
1


Example

The set below is a basis of R2:

S =

{[
1
2

]
,

[
1
−1

]}
• any vector x ∈ R2 can be written as a linear combination of vectors in S .

• any vector b is a linear combination of the two vectors in S
 Ax = b is consistent for any b.

• S spans R2 and is linearly independent
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Example

Find a basis of the subspace of R3 given by

W =


xy
z

 ∣∣∣∣∣∣ x + y − 3z = 0

 .

x =

xy
z

 =

 x
−x + 3z

z

 = x

 1
−1
0

+ z

03
1

 = xv + zw, ∀x , z ∈ R

The set {v,w} spans W . The set is also independent:

αv + βw = 0 =⇒ α = 0, β = 0
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Definition (Coordinates)

If S = {v1, v2, . . . , vn} is a basis of a vector space V , then any vector v ∈ V
can be expressed uniquely as v = α1v1 + α2v2 + . . .+ αnvn then the real
numbers α1, α2, . . . , αn are the coordinates of v with respect to the basis S .
We use the notation

[v]S =


α1
α2
...
αn


S

to denote the coordinate vector of v in the basis S .
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Example

Consider the two basis of R2:

B =

{[
1
0

]
,

[
0
1

]}

[v]B =

[
2
−5

]
B

S =

{[
1
2

]
,

[
1
−1

]}

[v]S =

[
−1
3

]
S

In the standard basis the coordinates of v are precisely the components of the
vector v.
In the basis S , they are such that

v = −1
[
1
2

]
+ 3

[
1
−1

]
=

[
2
−5

]

33



Vector Spaces (cntd)
Linear independence
Bases
DimensionExtension of the main theorem

Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

6. The rank of A is n

7. The column vectors of A are a basis of Rn

8. The rows of A (written as vectors) are a basis of Rn

(The last statement derives from |AT | = |A|.)
Hence, simply calculating the determinant can inform on all the above facts.
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Example

v1 =

12
3

 , v2 =

21
5

 , v3 =

 4
5
11


This set is linearly dependent since v3 = 2v1 + v2
so v3 ∈ Lin({v1, v2}) and Lin({v1, v2}) = Lin({v1, v2, v3}).
The linear span of {v1, v2} in R3 is a plane:

x =

xy
z

 = sv1 + tv2 = s

12
3

+ t

21
5


The vector x belongs to the subspace iff it can be expressed as a linear
combination of v1, v2, that is, if v1, v2, x are linearly dependent or:

|A| =

∣∣∣∣∣∣
1 2 x
2 1 y
3 5 z

∣∣∣∣∣∣ = 0 =⇒ |A| = 7x + y − 3z = 0
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Theorem
Let V be a vector space with a basis

B = {v1, v2, . . . , vn}

of n vectors. Then any set of n + 1 vectors is linearly dependent.

Proof:
Omitted (choose an arbitrary set of n + 1 vectors in V and show that since
any of them is spanned by the basis then the set must be linearly dependent.)

• Let S = {w1,w2, . . . ,wn+1} be any set of n + 1 vectors in V .
• Since B is a basis, then

wi = a1iv1 + a2iv2 + . . .+ anivn

• linear combination of vectors in S :

b1w1 + b2w2 + · · ·+ bn+1wn+1 = 0

Substituting:

b1(a11v1 + a21v2 + . . .+ an1vn) + b2(a12v1 + a22v2 + . . .+ an2vn) + · · ·
+ bn+1(a1,n+1v1 + a2,n+1v2 + . . .+ an,n+1vn) = 0
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It follows that:

Theorem
Let a vector space V have a finite basis consisting of r vectors. Then any
basis of V consists of exactly r vectors.

Definition (Dimension)

The number of k vectors in a finite basis of a vector space V is the
dimension of V and is denoted by dim(V ).
The vector space V = {0} is defined to have dimension 0.

• a plane in R2 is a two-dimensional subspace

• a line in Rn is a one-dimensional subspace

• a hyperplane in Rn is an (n − 1)-dimensional subspace of Rn

• the vector space F of real functions is an infinite-dimensional vector
space

• the vector space of real-valued sequences is an infinite-dimensional
vector space.
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Example

The plane W in R3

W = {x | x + y − 3z = 0}

has a basis consisting of the vectors v1 = [1, 2, 1]T and v2 = [3, 0, 1]T .

Let v3 be any vector 6∈W , eg, v3 = [1, 0, 0]T . Then the set S = {v1, v2, v3}
is a basis of R3.
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If we are given k vectors v1, v2, . . . , vk in Rn, how can we find a basis for
Lin({v1, v2, . . . , vk})?

We can:

• create an n × k matrix (vectors as columns) and find a basis for the
column space by putting the matrix in reduced row echelon form
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• Linear dependence and independence

• Determine linear dependency of a set of vectors, ie, find non-trivial
lin. combination that equal zero

• Basis

• Find a basis for a linear space

• Dimension (finite, infinite)
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