DM559

Linear and Integer Programming

Lecture 7 Vector Spaces (cntd) Linear Independence, Bases and Dimension

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outlook

Vector Spaces (cntd) Linear independence Bases Dimension

Week 9:

Section H1:

Today, Introductory class **Tomorrow, 14-16, Applications** Thursday, 12-14, Introductory class

Section H2:

Today, Introductory class Tomorrow, 12-14, Introductory class **Tomorrow, 14-16, Applications**

Outlook

Week 10:

Section H1:

Tuesday, 14-16, Exercise class Wednesday, 10-12, Laboratory class Thursday, 12-14, Exercise class Section H2:

Tuesday, 14-16, Exercise class Thursday, 10-12, Exercise class Friday, 08-10, Laboratory class

- a) Join? H1, Thursday, 12-14 \iff H2, Thursday, 10-12
 - 1. Move H1 from Thursday, 12-14 to Thursday, 10-12?
 - 2. Move H2 from Thursday, 10-12 to Thursday, 12-14? 🗸
- b) Join? H1, Wednesday, 10-12 \iff H2, Friday, 08-10
 - 1. Move H1 from Wednesday, 10-12 to Friday, 08-10?
 - 2. Move H2 from Friday, 08-10 to Wednesday, 10-12? ✔

Resume

- Matrix Calculus
- Geometric Insight
- Systems of Linear Equations. Gaussian Elimination.
- Elementary Matrices, Determinants, Matrix Inverse.

Last Time:

- Rank (number of leading ones in REF) Relationship with linear systems
- (Numerical methods, LU + iterative)
- Range of a matrix
- Vector Spaces: Definition, Examples. Linear combination.
- Subspaces

Outline

Vector Spaces (cntd) Linear independence Bases Dimension

- 1. Vector Spaces (cntd)
- 2. Linear independence

3. Bases

4. Dimension

Outline

Vector Spaces (cntd) Linear independence Bases Dimension

1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension

Linear Span

- If $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k$ and $\mathbf{w} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \ldots + \beta_k \mathbf{v}_k$, then $\mathbf{v} + \mathbf{w}$ and $s\mathbf{v}, s \in \mathbb{R}$ are also linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.
- The set of all linear combinations of a given set of vectors of a **vector space** *V* forms a **subspace**:

Definition (Linear span)

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. The linear span of $X = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ is the set of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, denoted by Lin(X), that is:

 $\mathsf{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}) = \{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k \mid \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}\}$

Theorem

If $X = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ is a set of vectors of a vector space V, then Lin(X) is a subspace of V and is also called the subspace spanned by X. It is the smallest subspace containing the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.

Example

- $\operatorname{Lin}({\mathbf{v}}) = {\alpha \mathbf{v} \mid \alpha \in \mathbb{R}}$ defines a line in \mathbb{R}^n .
- Recall that a plane in \mathbb{R}^3 has two equivalent representations:

ax + by + cz = d and $\mathbf{x} = \mathbf{p} + s\mathbf{v} + t\mathbf{w}, s, t \in \mathbb{R}$

where v and w are non parallel.

- If d = 0 and $\mathbf{p} = \mathbf{0}$, then

 $\{\mathbf{x} \mid \mathbf{x} = s\mathbf{v} + t\mathbf{w}, s, t, \in \mathbb{R}\} = \text{Lin}(\{\mathbf{v}, \mathbf{w}\})$

and hence a **subspace** of \mathbb{R}^n .

- If $d \neq 0$, then the plane is not a subspace. It is an affine subset, a translation of a subspace.

(recall that one can also show directly that a subset is a subspace or not)

Outline

Vector Spaces (cntd) Linear independence Bases Dimension

1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension

Linear Independence

Definition (Linear Independence)

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent (or form a linearly independent set) if and only if the vector equation

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$

has the unique solution

 $\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$

Definition (Linear Dependence)

Let V be a vector space and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent (or form a linearly dependent set) if and only if there are real numbers $\alpha_1, \alpha_2, \dots, \alpha_k$, not all zero, such that

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$

Example

In \mathbb{R}^2 , the vectors

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

are linearly independent. Indeed:

$$\alpha \begin{bmatrix} 1\\2 \end{bmatrix} + \beta \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \implies \qquad \begin{cases} \alpha + \beta = 0\\2\alpha - \beta = 0 \end{cases}$$

The homogeneous linear system has only the trivial solution, $\alpha=0,\beta=$ 0, so linear independence.

Example

In \mathbb{R}^3 , the following vectors are linearly dependent:

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 4\\5\\11 \end{bmatrix}$$

Indeed: $2v_1 + v_2 + v_3 = 0$

Theorem

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq V$ is linearly dependent if and only if at least one vector \mathbf{v}_i is a linear combination of the other vectors.

Proof

 \implies

If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ are linearly dependent then

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}$

has a solution with some $\alpha_i \neq 0$, then:

 $\mathbf{v}_{i} = -\frac{\alpha_{1}}{\alpha_{i}}\mathbf{v}_{1} - \frac{\alpha_{2}}{\alpha_{i}}\mathbf{v}_{2} - \dots - \frac{\alpha_{i-1}}{\alpha_{i}}\mathbf{v}_{i-1} - \frac{\alpha_{i+1}}{\alpha_{i}}\mathbf{v}_{i+1} + \dots - \frac{\alpha_{k}}{\alpha_{i}}\mathbf{v}_{k}$

which is a linear combination of the other vectors \leftarrow If \mathbf{v}_i is a lin combination of the other vectors, eg,

$$\mathbf{v}_i = \beta_1 \mathbf{v}_1 + \dots + \beta_{i-1} \mathbf{v}_{i-1} + \beta_{i+1} \mathbf{v}_{i+1} + \dots + \beta_k \mathbf{v}_k$$

then

$$\beta_1 \mathbf{v}_1 + \dots + \beta_{i-1} \mathbf{v}_{i-1} - \mathbf{v}_i + \beta_{i+1} \mathbf{v}_{i+1} + \dots + \beta_k \mathbf{v}_k = \mathbf{0}$$

Corollary

Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the other.

Example

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}$$

are linearly independent

Theorem

In a **vector space** V, a non-empty set of vectors that contains the zero vector is linearly dependent.

Proof:

$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subset V$$
$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{0}\}$$

 $0\mathbf{v}_1 + 0\mathbf{v}_2 + \ldots + 0\mathbf{v}_k + a\mathbf{0} = \mathbf{0}, \qquad a \neq 0$

Uniqueness of linear combinations

Theorem

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent vectors in V and if

 $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_k\mathbf{v}_k = b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + \ldots + b_k\mathbf{v}_k$

then

$$a_1=b_1, \quad a_2=b_2, \quad \ldots \quad a_k=b_k.$$

• If a vector **x** can be expressed as a linear combination of linearly independent vectors, then this can be done in only one way

 $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k$

Testing for Linear Independence in \mathbb{R}^n

For k vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_k \mathbf{v}_k$

is equivalent to

Ax

where A is the $n \times k$ matrix whose columns are the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ and $\mathbf{x} = [\alpha_1, \alpha_2, \dots, \alpha_k]^T$:

Theorem

The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n are linearly dependent if and only if the linear system $A\mathbf{x} = \mathbf{0}$, where A is the matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_k]$, has a solution other than $\mathbf{x} = \mathbf{0}$. Equivalently, the vectors are linearly independent precisely when the only solution to the system is $\mathbf{x} = \mathbf{0}$.

If vectors are linearly dependent, then any solution $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x} = [\alpha_1, \alpha_2, \dots, \alpha_k]^T$ of $A\mathbf{x} = \mathbf{0}$ gives a non-trivial linear combination $A\mathbf{x} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = \mathbf{0}$

Example

$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2\\ -5 \end{bmatrix}$$

are linearly dependent. We solve $A\mathbf{x} = \mathbf{0}$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & -5 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix}$$

The general solution is

$$\mathbf{v} = \begin{bmatrix} t \\ -3t \\ t \end{bmatrix}$$

and $A\mathbf{x} = t\mathbf{v}_1 - 3t\mathbf{v}_2 + t\mathbf{v}_3 = \mathbf{0}$ Hence, for t = 1 we have: $1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Recall that $A\mathbf{x} = \mathbf{0}$ has precisely one solution $\mathbf{x} = \mathbf{0}$ iff the $n \times k$ matrix is row equiv. to a row echelon matrix with k leading ones, ie, iff rank(A) = k

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent iff the $n \times k$ matrix $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k]$ has rank k.

Theorem

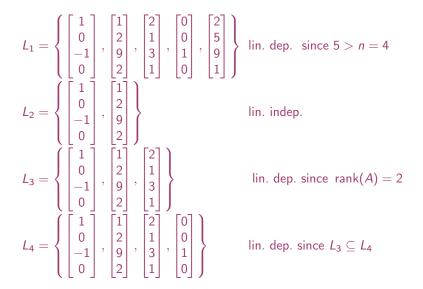
The maximum size of a linearly independent set of vectors in \mathbb{R}^n is n.

- rank(A) $\leq \min\{n, k\}$, hence rank(A) $\leq n \Rightarrow$ when lin. indep. $k \leq n$.
- we exhibit an example that has exactly n independent vectors in ℝⁿ (there are infinite examples):

$$\mathbf{e}_{1} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \qquad \mathbf{e}_{2} = \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \qquad \dots, \qquad \mathbf{e}_{n} = \begin{bmatrix} 0\\0\\\vdots\\1\\\vdots\\1 \end{bmatrix}$$

This is known as the standard basis of \mathbb{R}^n .

Example



Linear Independence and Span in \mathbb{R}^n

Let $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}$ be a set of vectors in \mathbb{R}^n . What are the conditions for S to span \mathbb{R}^n and be linearly independent?

Let A be the $n \times k$ matrix whose columns are the vectors from S.

- S spans \mathbb{R}^n if for any $v \in \mathbb{R}^n$ the linear system $A\mathbf{x} = \mathbf{v}$ is consistent. This happens when rank(A) = n, hence $k \ge n$
- S is linearly independent iff the linear system Ax = 0 has a unique solution. This happens when rank(A) = k, Hence k ≤ n

Hence, to span \mathbb{R}^n and to be linearly independent, the set *S* must have exactly *n* vectors and the square matrix *A* must have $det(A) \neq 0$

Example

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 4\\5\\1 \end{bmatrix} \qquad |A| = \begin{vmatrix} 1 & 2 & 4\\2 & 1 & 5\\3 & 5 & 1 \end{vmatrix} = 30 \neq 0$$

Outline

Vector Spaces (cntd) Linear independence Bases Dimension

1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension

Bases

Definition (Basis)

Let V be a vector space. Then the subset $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ of V is said to be a basis for V if:

1. B is a linearly independent set of vectors, and

```
2. B spans V; that is, V = \text{Lin}(B)
```

Theorem

If V is a vector space, then a smallest spanning set is a basis of V.

Theorem

 $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is a basis of V if and only if any $\mathbf{v} \in V$ is a unique linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$

Example

 $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is the standard basis of \mathbb{R}^n . the vectors are linearly independent and for any $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \in \mathbb{R}^n$, $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n$, ie,

$$\mathbf{x} = x_1 \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix} + \ldots + x_n \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$$

Example

The set below is a basis of \mathbb{R}^2 :

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

- any vector $\mathbf{x} \in \mathbb{R}^2$ can be written as a linear combination of vectors in S.
- any vector b is a linear combination of the two vectors in S
 → Ax = b is consistent for any b.
- S spans \mathbb{R}^2 and is linearly independent

Example

Find a basis of the **subspace** of \mathbb{R}^3 given by

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + y - 3z = 0 \right\}.$$

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ -x + 3z \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} = x\mathbf{v} + z\mathbf{w}, \quad \forall x, z \in \mathbb{R}$$

The set $\{v, w\}$ spans W. The set is also independent:

 $\alpha \mathbf{v} + \beta \mathbf{w} = \mathbf{0} \implies \alpha = \mathbf{0}, \beta = \mathbf{0}$

Coordinates

Definition (Coordinates)

If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is a basis of a vector space V, then any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$ then the real numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ are the coordinates of \mathbf{v} with respect to the basis S. We use the notation

$$[\mathbf{v}]_{\mathcal{S}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}_{\mathcal{S}}$$

to denote the coordinate vector of \mathbf{v} in the basis S.

Example

Consider the two basis of \mathbb{R}^2 :

$$B = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \qquad \qquad S = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$
$$[\mathbf{v}]_B = \begin{bmatrix} 2\\-5 \end{bmatrix}_B \qquad \qquad [\mathbf{v}]_S = \begin{bmatrix} -1\\3 \end{bmatrix}_S$$

In the standard basis the coordinates of ${\bf v}$ are precisely the components of the vector ${\bf v}.$

In the basis S, they are such that

$$\mathbf{v} = -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$

Extension of the main theorem

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

- 1. A is invertible
- 2. Ax = **b** has a unique solution for any $\mathbf{b} \in \mathbb{R}$
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, $\mathbf{x} = \mathbf{0}$
- 4. the reduced row echelon form of A is I.
- **5**. |*A*| ≠ 0
- 6. The rank of A is n
- 7. The column vectors of A are a basis of \mathbb{R}^n
- 8. The rows of A (written as vectors) are a basis of \mathbb{R}^n

(The last statement derives from $|A^{T}| = |A|$.) Hence, simply calculating the determinant can inform on all the above facts.

Example

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 4\\5\\11 \end{bmatrix}$$

This set is linearly dependent since $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$ so $\mathbf{v}_3 \in \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2\})$ and $\text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2\}) = \text{Lin}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$. The linear span of $\{\mathbf{v}_1, \mathbf{v}_2\}$ in \mathbb{R}^3 is a plane:

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = s\mathbf{v}_1 + t\mathbf{v}_2 = s \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

The vector **x** belongs to the **subspace** iff it can be expressed as a linear combination of v_1, v_2 , that is, if v_1, v_2, \bar{x} are linearly dependent or:

$$|A| = \begin{vmatrix} 1 & 2 & x \\ 2 & 1 & y \\ 3 & 5 & z \end{vmatrix} = 0 \implies |A| = 7x + y - 3z = 0$$

35

Outline

Vector Spaces (cntd) Linear independence Bases Dimension

1. Vector Spaces (cntd)

2. Linear independence

3. Bases

4. Dimension

Dimension

Theorem

Let V be a vector space with a basis

 $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

of *n* vectors. Then any set of n + 1 vectors is linearly dependent.

Proof:

Omitted (choose an arbitrary set of n + 1 vectors in V and show that since any of them is spanned by the basis then the set must be linearly dependent.)

It follows that:

Theorem

Let a **vector space** V have a finite basis consisting of r vectors. Then any basis of V consists of exactly r vectors.

Definition (Dimension)

The number of k vectors in a finite basis of a **vector space** V is the dimension of V and is denoted by $\dim(V)$. The **vector space** $V = \{\mathbf{0}\}$ is defined to have dimension 0.

- a plane in \mathbb{R}^2 is a two-dimensional subspace
- a line in \mathbb{R}^n is a one-dimensional **subspace**
- a hyperplane in \mathbb{R}^n is an (n-1)-dimensional **subspace** of \mathbb{R}^n
- the vector space *F* of real functions is an infinite-dimensional vector space
- the vector space of real-valued sequences is an infinite-dimensional vector space.

Dimension and bases of Subspaces

Vector Spaces (cntd) Linear independence Bases Dimension

Example

The plane W in \mathbb{R}^3

 $W = \{ \mathbf{x} \mid x + y - 3z = 0 \}$

has a basis consisting of the vectors $\mathbf{v}_1 = [1, 2, 1]^T$ and $\mathbf{v}_2 = [3, 0, 1]^T$.

Let \mathbf{v}_3 be any vector $\notin W$, eg, $\mathbf{v}_3 = [1, 0, 0]^T$. Then the set $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is a basis of \mathbb{R}^3 .

If we are given k vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n , how can we find a basis for $Lin({\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k})$?

We can:

• create an $n \times k$ matrix (vectors as columns) and find a basis for the column space by putting the matrix in reduced row echelon form

- Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Dimension (finite, infinite)