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Resume

Linear dependence and independence

Determine linear dependency of a set of vectors, ie, find non-trivial
lin. combination that equal zero

e Basis

Find a basis for a linear space

¢ Dimension (finite, infinite)
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Linear Transformations More on Change of Basis

Definition (Linear Transformation)

Let V and W be two vector spaces. A function T : V — W is linear if for all
u,ve Vandall o e R:

1. T(u+v)=T(u)+ T(v)
2. T(au) =aT(u)
A linear transformation is a linear function between two vector spaces

e If V = W also known as linear operator
e Equivalent condition: T(au + pv) = aT(u) + ST (v)

e forall0ec VvV, T(0)=0
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Example (Linear Transformations)
e vector space V =R, Fi(x) = px forany p € R

Vx,y €R,a,f € R: Fi(ax + By) = p(ax + By) = a(px) + B(px)
= aF1(x) + BFi(y)

e vector space V = R, F(x) = px + g for any p,q € R or F3(x) = x° are
not linear transformations

T(x+y)# T(x)+ T(y) forsomex,y € R

e vector spaces V = R", W = R"™, m x n matrix A, T(x) = Ax for x € R"

Tu+v)=A(u+v)=Au+ Av=T(u)+ T(v)
T(cu) = A(au) = cAu = aT(u)




Example (Linear Transformations)
e vector spaces V =R", W :f:R—R. T:R"— W:
u
uz

T(u) =T : = Puy,uz,...,un = Pu

Un
Pus, vz, oty = x4+ uox? 4 uzx3 - 4 upx”

Pu+V(X) == (pu + pv)(X)
pau(x) == OéPu(X)
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Linear Transformations

Coordinate Change

Linear Transformations and Matrices More on Change of Basis

e any m x n matrix A defines a linear transformation 7 : R” — R ~~ Ty

o for every linear transformation 7 : R” — R™ there is a matrix A such
that T(v) = Av ~~ Ar

Theorem

Let T : R" — R™ be a linear transformation and {e;,es,...,e,} denote the
standard basis of R" and let A be the matrix whose columns are the vectors
T(e1), T(e2),..., T(en): that is,

A=[T(e1) T(ez) ... T(en)]

Then, for every x € R", T(x) = Ax.

v

Proof: write any vector x € R" as lin. comb. of standard basis and then make
the image of it.



Example

T:R3 - RS

X X+y+z
T| |y = X—y
z X+2y —3z
e The image of u = [1,2,3]" can be found by substitution:
T(u)=1[6,-1,-4]".

e to find At:
1 1 1
T(el) = [1] T(ez) = |:1] T(E3) = [ 0 ]
1 2 -3
1 1 1
A=[T(e1) T(e2) T(e,)] = [1 -1 0 ]
1 2 -3

T(u)=Au=[6,-1,-4]".




Linear Transformation in R?

e We can visualize them!

e Reflection in the x axis:
Cx X |10
e L Pt

e Stretching the plane away from the origin

ro=[o 3] )

Linear Transformations
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e Rotation anticlockwise by an angle 0
y

1

T

(0,0 e 1

we search the images of the standard basis vector e, e>

=[] 7=

they will be orthogonal and with length 1.

A_|? b|  |cosf —sind
" |lc d|  |sinf cosf

For 7/4:

A {a b} _ {C(.)SQ —sin«ﬂ _ %
c d sinf cosf i
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Identity and Zero Linear Transformationge«= e

For T : V — V the linear transformation such that 7(v) = v is called
the identity.

if V =TR", the matrix A7 = | (of size n x n)

For T : V — W the linear transformation such that 7(v) = 0 is called
the zero transformation.

e If V=R"and W = R™, the matrix At is an m X n matrix of zeros.
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Composition of Linear Transformations e chenseofees

e let T:V — WandS: W — U be linear transformations.
The composition of ST is again a linear transformation given by:

where w = T (v)

e ST means do T and then do S: voLow U

e if T:R" - R™and S:R™ — RP in terms of matrices:
ST(v) =S(T(v)) = S(Arv) = AsArv

note that composition is not commutative
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Combinations of Linear Transformations ver«en chanseoisasie

o If S, T:V — W are linear transformations between the same vector
spaces, then S+ T and a5, a € R are linear transformations.

e hence also oS + 3T, o, € R is

14
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Inverse Linear Transformations More on Changs of Basi
e If V and W are finite-dimensional vector spaces of the same dimension,

then the inverse of a lin. transf. T : V — W is the lin. transf such that

T HYT(v))=v

e In R"if T—1 exists, then its matrix satisfies:
T YT(v))=Ar1Arv=Iv
thatis, 7 ! exists iff (A7) ! exists and Ar-1 = (A7) !
(recall that if BA =/ then B = A1)

e In R? for rotations:

cos(—0) —sin(—G)} - {cos@ sine}

Aroa = sin(—0) cos(—0) —sinf cos@
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Example

Is there an inverse to T : R3 — R3

X X+y+z
T\ |y = X—y
z x+4+2y —3z
11 1
A= |1 -1 0
1 2 -3

Since det(A) = 9 then the matrix is invertible, and 7! is given by the
matrix:

35 1 u Lu+dv+iw
—1_1 o -1 — i _2 i
AT = 3 41 T v = %u %V+8W
371 72 w §U+§V7§W
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2. Coordinate Change
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Linear Transformations
. Coordinate Change
Coordinates

More on Change of Basis

Recall:

Definition (Coordinates)

If S ={vi,vo,...,v,} is a basis of a vector space V/, then
e any vector v € V can be expressed uniquely as v = ajvy + -+ + a,v,
e and the real numbers a1, an, ..., «, are the coordinates of v wrt the
basis S.

To denote the coordinate vector of v in the basis S we use the notation

e%)

Ms=| -

Qn] g

e In the standard basis the coordinates of v are precisely the components
of the vector v: v = vie; + wes + -+ + v,e,

e How to find coordinates of a vector v wrt another basis?

22
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Transition from Standard to Basis B More on Change of Basis

Definition (Transition Matrix)

Let B = {vi,va,...,v,} be a basis of R”. The coordinates of a vector x wrt
B,a= a1, a,...,3,]" = [x]g, are found by solving the linear system:
avi + avo + ...+ av, = x that is x=[viva - v, ][X]s

We call P the matrix whose columns are the basis vectors:

P=vi vy v
Then for any vector x € R”

x = P[x|g transition matrix from B coords to standard coords
moreover P is invertible (columns are a basis):

[X]g = P~ 'x transition matrix from standard coords to B coords
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Example

1 2
B={|2],|-1
~1| | 4
1 2 3
P=|2 -12
-1 4 1

det(P) =4 # 0 so B is a basis of R*
We derive the standard coordinates of v:

1
v=4|2
1

v=| 2
-1

2
-1
4

]
|

2 3
-1 2
4 1

o}
),

-5

]_

-9
-3
-5

|




Example (cntd)

R L

We derive the B coordinates of vector x:

EREREE

either we solve Pa = x in a by Gaussian elimination or
we find the inverse P~

1
X|Jg =P 'x= |1 check the calculation

2 g

What are the B coordinates of the basis vector? ([1,0,0], [0, 1, 0], [0, 0, 1])




Linear Transformations
Coordinate Change

Change Of Basis More on Change of Basis

Since T(x) = Px then T(e;) = v;, ie, T maps standard basis vector to new
basis vectors
Example

Rotate basis in R? by 7/4 anticlockwise, find coordinates of a vector wrt the
new basis.

™ . 1 1

oSy —sing V2 V2

Ar = sinT cosT | |LX L
4 4 V2 V2

Since the matrix At rotates {e;, ey}, then A+ = P and its columns tell us
the coordinates of the new basis and v = P[v]|z and [v]g = P~ 'v. The
inverse is a rotation clockwise:
1
)- [

N
Sl
N N
—_
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Example (cntd)

Find the new coordinates of a vector x = [1,1]7

== 3]

N

Linear Transformations
Coordinate Change
More on Change of Basis
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Linear Transformations
Coordinate Change

Change of basis from B to B’ More on Change of Basi

Given a basis B of R” with transition matrix Pg,
and another basis B’ with transition matrix Pg/,
how do we change from coords in the basis B to coords in the basis B'?

. . Pglvls . [V]B/:P;/ v . . ’
coordinates in B —— 2%, standard coordinates —— 2 coordinates in B

Vs = Pg' Psv]s

] ex11sh2

M= Pg'Pg=Pg'viva ... v, [Pglvi Pglva ... Pglv,]

Theorem
If B and B’ are two bases of R", with

then the transition matrix from B coordinates to B’ coordinates is given by
M = [vilg [v2]gr -+ [Val5/]

(the columns of M are the B' coordinates of the basis B)
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Example

8 (SR PV R )

are basis of R?, indeed the corresponding transition matrices from standard

basis:
1 -1 35
2] e id)

have det(P) = 3, det(Q) = 1. Hence, lin. indep. vectors.
We are given

bds = {_41} B

find its coordinates in B’.

P
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Example (cntd)

1. find first the standard coordinates of x

= [30-B [4)-

and then find B’ coordinates:
-1 [2 —=5][5] _ [-25]
Ws= o= |2 ] 7] = |58

2. use transition matrix M from B to B’ coordinates:
v=Plv]g and v=Q]g ~ [v]gr = Q P|v]s:

S | A P

we =[5 4] = e,

~ O
—
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O utl i n e More on Change of Basis

3. More on Change of Basis
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Linear Transformations
Coordinate Change

Change of Basis for a Lin. Transf. More on Change of Basis

We saw how to find A for a transformation T : R” — R™ using standard

basis in both R” and R™. Now: is there a matrix that represents 7 wrt two
arbitrary bases B and B’?7

Theorem

Let T : R" — R™ be a linear transformation

and B = {vy,va,...,v,} and B' = {v{, v}, ... v]} be bases of R" and R™.
Then for all x € R", [T(x)]s = M[x]s

where M = Ag /) is the m x n matrix with the ith column equal to
[T(vi)]s/, the coordinate vector of T(v;) wrt the basis B'.

Proof:
change B to standard x=Pg"[x]g ¥xe€R"

i}
perform linear transformation T(x) = Ax = APZ*"[x]|g
in standard coordinates

1

change to basis B’ ulgr = (P3*") lu YueR™
[T(X)]e = (Pg"") ' APg "[x]5
M = (Pglxm)—lAngn
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How is M done?

o Pg=1[vi vy ... v

APg = AJvy vo ... v, = [Avy Avy ... Av,]
o Av; = T(v;): APg =[T(v1) T(v2) ... T(v,)]

M = Pg}APg = [Pzt T(v1) PgtT(v2) ... PglT(v,)]

M =[[T(vi)le [T(v2)le ... [T(va)le]

Hence, if we change the basis from the standard basis of R” and R™ the
matrix representation of T changes

33
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S i m i Ia rity More on Change of Basis

Particular case m = n:

Theorem

Let T : R"™ — R" be a linear transformation

and B = {x1,x2,...,%,} be a basis R".

Let A be the matrix corresponding to T in standard coordinates: T (x) = Ax.
Let

P= [xl Xy .- xn}
be the matrix whose columns are the vectors of B. Then for all x € R",

[T(x)]g = P *AP[x]s

Or, the matrix Ajg g = P~LAP performs the same linear transformation as
the matrix A but expressed it in terms of the basis B.

34
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S i m i Ia rity More on Change of Basis

Definition
A square matrix C is similar (represent the same linear transformation) to the
matrix A if there is an invertible matrix P such that

C=P'AP.

Similarity defines an equivalence relation:
o (reflexive) a matrix A is similar to itself

o (symmetric) if C is similar to A, then A is similar to C
C=P AP, A=Q7!CQ, Q=P!

e (transitive) if D is similar to C, and C to A, then D is similar to A

35



Example
W X - % ’ X

e x? + y? = 1 circle in standard form

e x? + 4y? = 4 ellipse in standard form
e 5x% +5y? — 6xy = 2 7?7 Try rotating /4 anticlockwise

cosf —sinf X -1
Ar=1a) )| =2 =P
Sin COS ﬁ ﬁ

11
v Pie =[] - [f 7Y
Y V2 V2

X?24+4y2=1
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Example

Let 7 :R2 — R2:

(1X[) = | % + 3y
y|)  |-x+5y
What is its effect on the xy-plane?
Let's change the basis to

o=t = {[1]- ]}

Find the matrix of T in this basis:

e C =P 1AP, A matrix of T in standard basis, P is transition matrix
from B to standard

e [T 3 A1
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Example (cntd)

e the B coordinates of the B basis vectors are

)

e so in B coordinates T is a stretch in the direction v; by 4 and in dir. v,

by 2:
0[],

e The effect of T is however the same no matter what basis, only the
matrices change! So also in the standard coordinates we must have:

[Twle = |g 3

Avi = 4vy Avy = 2vp




Summary Mo e s asis

e Linear transformations and proofs that a given mapping is linear
e two-way relationship between matrices and linear transformations
e change from standard (S) to arbitrary basis (B)

e change of basis between two arbitrary basis (from B to B’)

e Matrix representation of a transformation with respect to two arbitrary
basis

e Similarity of square matrices
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