DM559 Linear and Integer Programming

Lecture 8 Linear Transformations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Linear Transformations Coordinate Change More on Change of Basis

1. Linear Transformations

2. Coordinate Change

3. More on Change of Basis

- Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Dimension (finite, infinite)

Outline

Linear Transformations Coordinate Change More on Change of Basis

1. Linear Transformations

2. Coordinate Change

3. More on Change of Basis

Linear Transformations

Definition (Linear Transformation)

Let V and W be two vector spaces. A function $T : V \to W$ is linear if for all $\mathbf{u}, \mathbf{v} \in V$ and all $\alpha \in \mathbb{R}$:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- **2**. $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$

A linear transformation is a linear function between two vector spaces

- If V = W also known as linear operator
- Equivalent condition: $T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v})$
- for all $\mathbf{0} \in V, T(\mathbf{0}) = \mathbf{0}$

Example (Linear Transformations)

• vector space $V = \mathbb{R}$, $F_1(x) = px$ for any $p \in \mathbb{R}$

 $\forall x, y \in \mathbb{R}, \alpha, \beta \in \mathbb{R} : F_1(\alpha x + \beta y) = p(\alpha x + \beta y) = \alpha(px) + \beta(px)$ $= \alpha F_1(x) + \beta F_1(y)$

vector space V = ℝ, F₂(x) = px + q for any p, q ∈ ℝ or F₃(x) = x² are not linear transformations

 $T(x+y) \neq T(x) + T(y)$ for some $x, y \in \mathbb{R}$

• vector spaces $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, $m \times n$ matrix A, $T(\mathbf{x}) = A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = T(\mathbf{u}) + T(\mathbf{v})$$

$$T(\alpha \mathbf{u}) = A(\alpha \mathbf{u}) = \alpha A\mathbf{u} = \alpha T(\mathbf{u})$$

Example (Linear Transformations)

• vector spaces $V = \mathbb{R}^n$, $W : f : \mathbb{R} \to \mathbb{R}$. $T : \mathbb{R}^n \to W$:

$$T(\mathbf{u}) = T\left(\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \right) = p_{u_1, u_2, \dots, u_n} = p_{\mathbf{u}}$$

 $p_{u_1,u_2,\ldots,u_n} = u_1 x^1 + u_2 x^2 + u_3 x^3 + \cdots + u_n x^n$

$$p_{\mathbf{u}+\mathbf{v}}(x) = \cdots = (p_{\mathbf{u}} + p_{\mathbf{v}})(x)$$
$$p_{\alpha \mathbf{u}}(\mathbf{x}) = \cdots = \alpha p_{u}(x)$$

Linear Transformations and Matrices

- any $m \times n$ matrix A defines a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m \rightsquigarrow T_A$
- for every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ there is a matrix A such that $T(\mathbf{v}) = A\mathbf{v} \rightsquigarrow A_T$

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ denote the standard basis of \mathbb{R}^n and let A be the matrix whose columns are the vectors $T(\mathbf{e}_1), T(\mathbf{e}_2), \dots, T(\mathbf{e}_n)$: that is,

 $A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n) \end{bmatrix}$

Then, for every $\mathbf{x} \in \mathbb{R}^n$, $T(\mathbf{x}) = A\mathbf{x}$.

Proof: write any vector $\mathbf{x} \in \mathbb{R}^n$ as lin. comb. of standard basis and then make the image of it.

Example

 $T: \mathbb{R}^3 \to \mathbb{R}^3$

$$T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}x+y+z\\x-y\\x+2y-3z\end{bmatrix}$$

- The image of $\mathbf{u} = [1, 2, 3]^T$ can be found by substitution: $T(\mathbf{u}) = [6, -1, -4]^T$.
- to find A_T :

$$T(\mathbf{e}_1) = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad T(\mathbf{e}_2) = \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \quad T(\mathbf{e}_3) = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}$$
$$A = \begin{bmatrix} T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ T(\mathbf{e}_n) \end{bmatrix} = \begin{bmatrix} 1 \ 1 \ 1 \ 1\\1 \ -1 \ 0\\1 \ 2 \ -3 \end{bmatrix}$$
$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 6, -1, -4 \end{bmatrix}^T.$$

Linear Transformation in \mathbb{R}^2

- We can visualize them!
- Reflection in the x axis:

$$T:\begin{bmatrix}x\\y\end{bmatrix}\mapsto\begin{bmatrix}x\\-y\end{bmatrix}\qquad A_T=\begin{bmatrix}1&0\\0&-1\end{bmatrix}$$

• Stretching the plane away from the origin

 $T(\mathbf{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• Rotation anticlockwise by an angle θ

we search the images of the standard basis vector $\boldsymbol{e}_1, \boldsymbol{e}_2$

$$T(\mathbf{e}_1) = \begin{bmatrix} a \\ c \end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix} b \\ d \end{bmatrix}$$

they will be orthogonal and with length 1.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

For
$$\pi/4$$
:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Identity and Zero Linear Transformations Coordinate Change More on Change of Basis

- For T : V → V the linear transformation such that T(v) = v is called the identity.
- if $V = \mathbb{R}^n$, the matrix $A_T = I$ (of size $n \times n$)
- For T : V → W the linear transformation such that T(v) = 0 is called the zero transformation.
- If $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, the matrix A_T is an $m \times n$ matrix of zeros.

Composition of Linear Transformations

 Let T : V → W and S : W → U be linear transformations. The composition of ST is again a linear transformation given by:

 $ST(\mathbf{v}) = S(T(\mathbf{v})) = S(\mathbf{w}) = \mathbf{u}$

where $\mathbf{w} = T(\mathbf{v})$

- *ST* means do *T* and then do *S*: $V \xrightarrow{T} W \xrightarrow{S} U$
- if $T : \mathbb{R}^n \to \mathbb{R}^m$ and $S : \mathbb{R}^m \to \mathbb{R}^p$ in terms of matrices:

 $ST(\mathbf{v}) = S(T(\mathbf{v})) = S(A_T\mathbf{v}) = A_SA_T\mathbf{v}$

note that composition is not commutative

Combinations of Linear Transformations

- If $S, T: V \to W$ are linear transformations between the same vector spaces, then S + T and αS , $\alpha \in \mathbb{R}$ are linear transformations.
- hence also $\alpha S + \beta T$, $\alpha, \beta \in \mathbb{R}$ is

Inverse Linear Transformations

 If V and W are finite-dimensional vector spaces of the same dimension, then the inverse of a lin. transf. T : V → W is the lin. transf such that

 $T^{-1}(T(v)) = \mathbf{v}$

• In \mathbb{R}^n if T^{-1} exists, then its matrix satisfies:

 $T^{-1}(T(v)) = A_{T^{-1}}A_T \mathbf{v} = I\mathbf{v}$

that is, T^{-1} exists iff $(A_T)^{-1}$ exists and $A_{T^{-1}} = (A_T)^{-1}$ (recall that if BA = I then $B = A^{-1}$)

• In \mathbb{R}^2 for rotations:

$$A_{\mathcal{T}^{-1}} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

Example

Is there an inverse to $\,\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^3$

$$T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = \begin{bmatrix}x+y+z\\x-y\\x+2y-3z\end{bmatrix}$$
$$A = \begin{bmatrix}1 & 1 & 1\\1 & -1 & 0\\1 & 2 & -3\end{bmatrix}$$

Since det(A) = 9 then the matrix is invertible, and T^{-1} is given by the matrix:

$$A^{-1} = \frac{1}{9} \begin{bmatrix} 3 & 5 & 1 \\ 3 & -4 & 1 \\ 3 & -1 & -2 \end{bmatrix} \qquad T^{-1} \left(\begin{bmatrix} u \\ v \\ w \end{bmatrix} \right) = \begin{bmatrix} \frac{1}{3}u + \frac{5}{9}v + \frac{1}{9}w \\ \frac{1}{3}u - \frac{4}{9}v + \frac{1}{9}w \\ \frac{1}{3}u + \frac{1}{9}v - \frac{2}{9}w \end{bmatrix}$$

Outline

Linear Transformations Coordinate Change More on Change of Basis

1. Linear Transformations

2. Coordinate Change

3. More on Change of Basis

Coordinates

Recall:

Definition (Coordinates)

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of a vector space V, then

- any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$
- and the real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the coordinates of **v** wrt the basis *S*.

To denote the coordinate vector of \mathbf{v} in the basis S we use the notation

$$[\mathbf{v}]_{\mathcal{S}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}_{\mathcal{S}}$$

- In the standard basis the coordinates of v are precisely the components of the vector v: v = v₁e₁ + v₂e₂ + ··· + v_ne_n
- How to find coordinates of a vector **v** wrt another basis?

Transition from Standard to Basis B

Definition (Transition Matrix)

Let $B = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be a basis of \mathbb{R}^n . The coordinates of a vector \mathbf{x} wrt B, $\mathbf{a} = [a_1, a_2, \dots, a_n]^T = [\mathbf{x}]_B$, are found by solving the linear system:

 $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_n\mathbf{v}_n = \mathbf{x}$ that is $\mathbf{x} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \mathbf{v}_n][\mathbf{x}]_B$

We call *P* the matrix whose columns are the basis vectors:

 $P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \mathbf{v}_n]$

Then for any vector $\mathbf{x} \in \mathbb{R}^n$

 $\mathbf{x} = P[\mathbf{x}]_B$ transition matrix from *B* coords to standard coords moreover *P* is invertible (columns are a basis): $[\mathbf{x}]_B = P^{-1}\mathbf{x}$ transition matrix from standard coords to *B* coords Example

$$B = \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\} \qquad [\mathbf{v}]_B = \begin{bmatrix} 4\\1\\-5 \end{bmatrix}$$
$$P = \begin{bmatrix} 1 & 2 & 3\\2 & -1 & 2\\-1 & 4 & 1 \end{bmatrix}$$

 $det(P) = 4 \neq 0$ so *B* is a basis of \mathbb{R}^3 We derive the standard coordinates of **v**:

$$\mathbf{v} = 4 \begin{bmatrix} 1\\2\\-1 \end{bmatrix} + \begin{bmatrix} 2\\-1\\4 \end{bmatrix} - 5 \begin{bmatrix} 3\\2\\1 \end{bmatrix} = \begin{bmatrix} -9\\-3\\-5 \end{bmatrix}$$
$$\mathbf{v} = \begin{bmatrix} 1 & 2 & 3\\2 & -1 & 2\\-1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 4\\1\\-5 \end{bmatrix}_{B} = \begin{bmatrix} -9\\-3\\-5 \end{bmatrix}$$

Example (cntd)

$$B = \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}, \qquad [\mathbf{x}] = \begin{bmatrix} 5\\7\\-3 \end{bmatrix}$$

We derive the B coordinates of vector **x**:

$$\begin{bmatrix} 5\\7\\-3 \end{bmatrix} = a_1 \begin{bmatrix} 1\\2\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 2\\-1\\4 \end{bmatrix} + a_3 \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

either we solve $P\mathbf{a} = \mathbf{x}$ in \mathbf{a} by Gaussian elimination or we find the inverse P^{-1} :

$$[\mathbf{x}]_B = P^{-1}\mathbf{x} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}_B$$
 check the calculation

What are the B coordinates of the basis vector? ([1, 0, 0], [0, 1, 0], [0, 0, 1])

Change of Basis

Since $T(\mathbf{x}) = P\mathbf{x}$ then $T(\mathbf{e}_i) = \mathbf{v}_i$, ie, T maps standard basis vector to new basis vectors

Example

Rotate basis in \mathbb{R}^2 by $\pi/4$ anticlockwise, find coordinates of a vector wrt the new basis.

$$A_{\mathcal{T}} = \begin{bmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Since the matrix A_T rotates $\{\mathbf{e}_1, \mathbf{e}_2\}$, then $A_T = P$ and its columns tell us the coordinates of the new basis and $\mathbf{v} = P[\mathbf{v}]_B$ and $[\mathbf{v}]_B = P^{-1}\mathbf{v}$. The inverse is a rotation clockwise:

$$P^{-1} = \begin{bmatrix} \cos(-\frac{\pi}{4}) & -\sin(-\frac{\pi}{4}) \\ \sin(-\frac{\pi}{4}) & \cos(-\frac{\pi}{4}) \end{bmatrix} = \begin{bmatrix} \cos(\frac{\pi}{4}) & \sin(\frac{\pi}{4}) \\ -\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Example (cntd)

Find the new coordinates of a vector $\mathbf{x} = [1,1]^{\mathcal{T}}$

$$[\mathbf{x}]_B = P^{-1}\mathbf{x} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$$

Change of basis from B to B'

Given a basis B of \mathbb{R}^n with transition matrix P_B , and another basis B' with transition matrix $P_{B'}$, how do we change from coords in the basis B to coords in the basis B'?

coordinates in $B \xrightarrow{\mathbf{v}=P_B[\mathbf{v}]_B}$ standard coordinates $\xrightarrow{[\mathbf{v}]_{B'}=P_{B'}^{-1}\mathbf{v}}$ coordinates in B' $[\mathbf{v}]_{B'}=P_{B'}^{-1}P_B[\mathbf{v}]_B$

$$M = P_{B'}^{-1} P_B = P_{B'}^{-1} [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n] \stackrel{\text{exl1sh2}}{=} [P_{B'}^{-1} \mathbf{v}_1 \ P_{B'}^{-1} \mathbf{v}_2 \ \dots \ P_{B'}^{-1} \mathbf{v}_n]$$

Theorem

If B and B' are two bases of \mathbb{R}^n , with

 $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

then the transition matrix from B coordinates to B' coordinates is given by

 $M = \begin{bmatrix} [\mathbf{v}_1]_{B'} & [\mathbf{v}_2]_{B'} & \cdots & [\mathbf{v}_n]_{B'} \end{bmatrix}$

(the columns of M are the B' coordinates of the basis B)

Example

$$B = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \qquad B' = \left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 5\\2 \end{bmatrix} \right\}$$

are basis of $\mathbb{R}^2,$ indeed the corresponding transition matrices from standard basis:

$$P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$

have det(P) = 3, det(Q) = 1. Hence, lin. indep. vectors. We are given

$$[\mathbf{x}]_B = \begin{bmatrix} 4 \\ -1 \end{bmatrix}_B$$

find its coordinates in B'.

Example (cntd)

1. find first the standard coordinates of \boldsymbol{x}

$$\mathbf{x} = 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

and then find B' coordinates:

$$[\mathbf{x}]_{\mathcal{S}} = Q^{-1}\mathbf{x} = \begin{bmatrix} 2 & -5\\ -1 & 3 \end{bmatrix} \begin{bmatrix} 5\\ 7 \end{bmatrix} = \begin{bmatrix} -25\\ 16 \end{bmatrix}_{\mathcal{S}}$$

2. use transition matrix M from B to B' coordinates: $\mathbf{v} = P[\mathbf{v}]_B$ and $\mathbf{v} = Q[\mathbf{v}]_{B'} \rightsquigarrow [\mathbf{v}]_{B'} = Q^{-1}P[\mathbf{v}]_B$:

$$M = Q^{-1}P = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -8 & -7 \\ 5 & 4 \end{bmatrix}$$
$$[\mathbf{x}]_{B'} = \begin{bmatrix} -8 & -7 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} -25 \\ 16 \end{bmatrix}_{B'}$$

Outline

Linear Transformations Coordinate Change More on Change of Basis

1. Linear Transformations

2. Coordinate Change

3. More on Change of Basis

Change of Basis for a Lin. Transf.

We saw how to find A for a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ using standard basis in both \mathbb{R}^n and \mathbb{R}^m . Now: is there a matrix that represents T wrt two arbitrary bases B and B'?

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $B' = \{\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n\}$ be bases of \mathbb{R}^n and \mathbb{R}^m . Then for all $\mathbf{x} \in \mathbb{R}^n$, $[T(\mathbf{x})]_{B'} = M[\mathbf{x}]_B$ where $M = A_{[B,B']}$ is the $m \times n$ matrix with the *i*th column equal to $[T(\mathbf{v}_i)]_{B'}$, the coordinate vector of $T(\mathbf{v}_i)$ wrt the basis B'.

Proof:

How is M done?

- $P_B = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]$
- $AP_B = A[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n] = [A\mathbf{v}_1 \ A\mathbf{v}_2 \ \dots \ A\mathbf{v}_n]$
- $A\mathbf{v}_i = T(\mathbf{v}_i)$: $AP_B = [T(\mathbf{v}_1) \ T(\mathbf{v}_2) \ \dots \ T(\mathbf{v}_n)]$
- $M = P_{B'}^{-1}AP_B = [P_{B'}^{-1}T(\mathbf{v}_1) \ P_{B'}^{-1}T(\mathbf{v}_2) \ \dots \ P_{B'}^{-1}T(\mathbf{v}_n)]$
- $M = [[T(\mathbf{v}_1)]_{B'} [T(\mathbf{v}_2)]_{B'} \dots [T(\mathbf{v}_n)]_{B'}]$

Hence, if we change the basis from the standard basis of \mathbb{R}^n and \mathbb{R}^m the matrix representation of $\mathcal T$ changes

Similarity

Particular case m = n:

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and $B = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ be a basis \mathbb{R}^n . Let A be the matrix corresponding to T in standard coordinates: $T(\mathbf{x}) = A\mathbf{x}$. Let

 $P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix}$

be the matrix whose columns are the vectors of *B*. Then for all $\mathbf{x} \in \mathbb{R}^n$,

 $[T(\mathbf{x})]_B = P^{-1}AP[\mathbf{x}]_B$

Or, the matrix $A_{[B,B]} = P^{-1}AP$ performs the same linear transformation as the matrix A but expressed it in terms of the basis B.

Similarity

Definition

A square matrix C is similar (represent the same linear transformation) to the matrix A if there is an invertible matrix P such that

 $C = P^{-1}AP.$

Similarity defines an equivalence relation:

- (reflexive) a matrix A is similar to itself
- (symmetric) if C is similar to A, then A is similar to C $C = P^{-1}AP$, $A = Q^{-1}CQ$, $Q = P^{-1}$
- (transitive) if D is similar to C, and C to A, then D is similar to A

Example

- $x^2 + y^2 = 1$ circle in standard form
- $x^2 + 4y^2 = 4$ ellipse in standard form
- $5x^2 + 5y^2 6xy = 2$??? Try rotating $\pi/4$ anticlockwise

$$A_{T} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = P$$
$$\mathbf{v} = P[\mathbf{v}]_{B} \iff \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$
$$X^{2} + 4Y^{2} = 1$$

Example

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$:

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x+3y\\-x+5y\end{bmatrix}$$

What is its effect on the *xy*-plane? Let's change the basis to

$$B = \{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$$

Find the matrix of T in this basis:

• $C = P^{-1}AP$, A matrix of T in standard basis, P is transition matrix from B to standard

$$C = P^{-1}AP = \frac{1}{2} \begin{bmatrix} -1 & 3\\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3\\ -1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0\\ 0 & 2 \end{bmatrix}$$

Example (cntd)

• the B coordinates of the B basis vectors are

$$[\mathbf{v}_1]_B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_B, \quad [\mathbf{v}_2]_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_B$$

so in *B* coordinates *T* is a stretch in the direction v₁ by 4 and in dir. v₂ by 2:

$$[T(\mathbf{v}_1)]_B = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}_B = \begin{bmatrix} 4 \\ 0 \end{bmatrix}_B = 4[\mathbf{v}_1]_B$$

• The effect of *T* is however the same no matter what basis, only the matrices change! So also in the standard coordinates we must have:

$$A\mathbf{v}_1 = 4\mathbf{v}_1 \qquad A\mathbf{v}_2 = 2\mathbf{v}_2$$

- Linear transformations and proofs that a given mapping is linear
- two-way relationship between matrices and linear transformations
- change from standard (S) to arbitrary basis (B)
- change of basis between two arbitrary basis (from B to B')
- Matrix representation of a transformation with respect to two arbitrary basis
- Similarity of square matrices