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Linear Transformations
Coordinate Change
More on Change of BasisResume

• Linear dependence and independence

• Determine linear dependency of a set of vectors, ie, find non-trivial
lin. combination that equal zero

• Basis

• Find a basis for a linear space

• Dimension (finite, infinite)
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Linear Transformations
Coordinate Change
More on Change of BasisLinear Transformations

Definition (Linear Transformation)

Let V and W be two vector spaces. A function T : V →W is linear if for all
u, v ∈ V and all α ∈ R:

1. T (u + v) = T (u) + T (v)
2. T (αu) = αT (u)

A linear transformation is a linear function between two vector spaces

• If V = W also known as linear operator

• Equivalent condition: T (αu + βv) = αT (u) + βT (v)

• for all 0 ∈ V ,T (0) = 0
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Linear Transformations
Coordinate Change
More on Change of Basis

Example (Linear Transformations)

• vector space V = R, F1(x) = px for any p ∈ R

∀x , y ∈ R, α, β ∈ R : F1(αx + βy) = p(αx + βy) = α(px) + β(px)
= αF1(x) + βF1(y)

• vector space V = R, F2(x) = px + q for any p, q ∈ R or F3(x) = x2 are
not linear transformations

T (x + y) 6= T (x) + T (y) for some x , y ∈ R

• vector spaces V = Rn, W = Rm, m× n matrix A, T (x) = Ax for x ∈ Rn

T (u + v) = A(u + v) = Au + Av = T (u) + T (v)
T (αu) = A(αu) = αAu = αT (u)
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Linear Transformations
Coordinate Change
More on Change of Basis

Example (Linear Transformations)

• vector spaces V = Rn, W : f : R→ R. T : Rn →W :

T (u) = T




u1
u2
...

un


 = pu1,u2,...,un = pu

pu1,u2,...,un = u1x1 + u2x2 + u3x3 + · · ·+ unxn

pu+v(x) = · · · = (pu + pv)(x)
pαu(x) = · · · = αpu(x)
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Linear Transformations
Coordinate Change
More on Change of BasisLinear Transformations and Matrices

• any m × n matrix A defines a linear transformation T : Rn → Rm  TA

• for every linear transformation T : Rn → Rm there is a matrix A such
that T (v) = Av  AT

Theorem

Let T : Rn → Rm be a linear transformation and {e1, e2, . . . , en} denote the
standard basis of Rn and let A be the matrix whose columns are the vectors
T (e1),T (e2), . . . ,T (en): that is,

A =
[
T (e1) T (e2) . . . T (en)

]
Then, for every x ∈ Rn, T (x) = Ax.

Proof: write any vector x ∈ Rn as lin. comb. of standard basis and then make
the image of it.
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Example

T : R3 → R3

T

x
y
z

 =

 x + y + z
x − y

x + 2y − 3z


• The image of u = [1, 2, 3]T can be found by substitution:

T (u) = [6,−1,−4]T .

• to find AT :

T (e1) =

11
1

 T (e2) =

 1
−1
2

 T (e3) =

 1
0
−3



A = [T (e1) T (e2) T (en)] =

1 1 1
1 −1 0
1 2 −3


T (u) = Au = [6,−1,−4]T .



Linear Transformations
Coordinate Change
More on Change of BasisLinear Transformation in R2

• We can visualize them!

• Reflection in the x axis:

T :

[
x
y

]
7→
[

x
−y

]
AT =

[
1 0
0 −1

]

• Stretching the plane away from the origin

T (x) =
[
2 0
0 3

] [
x
y

]
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Linear Transformation in R2

• Rotation anticlockwise by an angle θ

1

1

e1

e2
T (e1)

T (e2)

(0, 0)
θ

θ

x

y

we search the images of the standard basis vector e1, e2

T (e1) =

[
a
c

]
, T (e2) =

[
b
d

]
they will be orthogonal and with length 1.

A =

[
a b
c d

]
=

[
cos θ − sin θ
sin θ cos θ

]
For π/4:

A =

[
a b
c d

]
=

[
cos θ − sin θ
sin θ cos θ

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]



Linear Transformations
Coordinate Change
More on Change of BasisIdentity and Zero Linear Transformations

• For T : V → V the linear transformation such that T (v) = v is called
the identity.

• if V = Rn, the matrix AT = I (of size n × n)

• For T : V →W the linear transformation such that T (v) = 0 is called
the zero transformation.

• If V = Rn and W = Rm, the matrix AT is an m × n matrix of zeros.
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Linear Transformations
Coordinate Change
More on Change of BasisComposition of Linear Transformations

• Let T : V →W and S : W → U be linear transformations.
The composition of ST is again a linear transformation given by:

ST (v) = S(T (v)) = S(w) = u

where w = T (v)

• ST means do T and then do S : V T−→W S−→ U

• if T : Rn → Rm and S : Rm → Rp in terms of matrices:

ST (v) = S(T (v)) = S(ATv) = ASATv

note that composition is not commutative
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Linear Transformations
Coordinate Change
More on Change of BasisCombinations of Linear Transformations

• If S ,T : V →W are linear transformations between the same vector
spaces, then S + T and αS , α ∈ R are linear transformations.

• hence also αS + βT , α, β ∈ R is
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Linear Transformations
Coordinate Change
More on Change of BasisInverse Linear Transformations

• If V and W are finite-dimensional vector spaces of the same dimension,
then the inverse of a lin. transf. T : V →W is the lin. transf such that

T−1(T (v)) = v

• In Rn if T−1 exists, then its matrix satisfies:

T−1(T (v)) = AT−1ATv = Iv

that is, T−1 exists iff (AT )
−1 exists and AT−1 = (AT )

−1

(recall that if BA = I then B = A−1)

• In R2 for rotations:

AT−1 =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
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Linear Transformations
Coordinate Change
More on Change of Basis

Example

Is there an inverse to T : R3 → R3

T

x
y
z

 =

 x + y + z
x − y

x + 2y − 3z



A =

1 1 1
1 −1 0
1 2 −3


Since det(A) = 9 then the matrix is invertible, and T−1 is given by the
matrix:

A−1 =
1
9

3 5 1
3 −4 1
3 −1 −2

 T−1

u
v
w

 =

 1
3u + 5

9v + 1
9w

1
3u − 4

9v + 1
9w

1
3u + 1

9v − 2
9w


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Linear Transformations
Coordinate Change
More on Change of BasisCoordinates

Recall:

Definition (Coordinates)

If S = {v1, v2, . . . , vn} is a basis of a vector space V , then

• any vector v ∈ V can be expressed uniquely as v = α1v1 + · · ·+ αnvn

• and the real numbers α1, α2, . . . , αn are the coordinates of v wrt the
basis S .

To denote the coordinate vector of v in the basis S we use the notation

[v]S =


α1
α2
...
αn


S

• In the standard basis the coordinates of v are precisely the components
of the vector v: v = v1e1 + v2e2 + · · ·+ vnen

• How to find coordinates of a vector v wrt another basis?
22



Linear Transformations
Coordinate Change
More on Change of BasisTransition from Standard to Basis B

Definition (Transition Matrix)

Let B = {v1, v2, . . . , vn} be a basis of Rn. The coordinates of a vector x wrt
B, a = [a1, a2, . . . , an]

T = [x]B , are found by solving the linear system:

a1v1 + a2v2 + . . .+ anvn = x that is x = [v1 v2 · · · vn][x]B

We call P the matrix whose columns are the basis vectors:

P = [v1 v2 · · · vn]

Then for any vector x ∈ Rn

x = P[x]B transition matrix from B coords to standard coords

moreover P is invertible (columns are a basis):

[x]B = P−1x transition matrix from standard coords to B coords
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Example

B =


 1

2
−1

 ,
 2
−1
4

 ,
32
1

 [v]B =

 4
1
−5



P =

 1 2 3
2 −1 2
−1 4 1


det(P) = 4 6= 0 so B is a basis of R3

We derive the standard coordinates of v:

v = 4

 1
2
−1

+

 2
−1
4

− 5

32
1

 =

−9−3
−5



v =

 1 2 3
2 −1 2
−1 4 1

 4
1
−5


B

=

−9−3
−5





Example (cntd)

B =


 1

2
−1

 ,
 2
−1
4

 ,
32
1

 , [x] =

 5
7
−3


We derive the B coordinates of vector x: 5

7
−3

 = a1

 1
2
−1

+ a2

 2
−1
4

+ a3

32
1


either we solve Pa = x in a by Gaussian elimination or
we find the inverse P−1:

[x]B = P−1x =

 1
−1
2


B

check the calculation

What are the B coordinates of the basis vector? ([1, 0, 0], [0, 1, 0], [0, 0, 1])



Linear Transformations
Coordinate Change
More on Change of BasisChange of Basis

Since T (x) = Px then T (ei ) = vi , ie, T maps standard basis vector to new
basis vectors

Example

Rotate basis in R2 by π/4 anticlockwise, find coordinates of a vector wrt the
new basis.

AT =

[
cos π4 − sin π

4
sin π

4 cos π4

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]

Since the matrix AT rotates {e1, e2}, then AT = P and its columns tell us
the coordinates of the new basis and v = P[v]B and [v]B = P−1v. The
inverse is a rotation clockwise:

P−1 =

[
cos(−π4 ) − sin(−π4 )
sin(−π4 ) cos(−π4 )

]
=

[
cos(π4 ) sin(π4 )
− sin(π4 ) cos(π4 )

]
=

[
1√
2

1√
2

− 1√
2

1√
2

]
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Linear Transformations
Coordinate Change
More on Change of Basis

Example (cntd)

Find the new coordinates of a vector x = [1, 1]T

[x]B = P−1x =

[
1√
2

1√
2

− 1√
2

1√
2

] [
1
1

]
=

[√
2
0

]
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Linear Transformations
Coordinate Change
More on Change of BasisChange of basis from B to B ′

Given a basis B of Rn with transition matrix PB ,
and another basis B ′ with transition matrix PB′ ,
how do we change from coords in the basis B to coords in the basis B ′?

coordinates in B
v=PB [v]B−−−−−−→ standard coordinates

[v]B′=P−1
B′ v−−−−−−−→ coordinates in B ′

[v]B′ = P−1
B′ PB [v]B

M = P−1
B′ PB = P−1

B′ [v1 v2 . . . vn]
ex11sh2
= [P−1

B′ v1 P−1
B′ v2 . . . P−1

B′ vn]

Theorem

If B and B ′ are two bases of Rn, with

B = {v1, v2, . . . , vn}

then the transition matrix from B coordinates to B ′ coordinates is given by

M =
[
[v1]B′ [v2]B′ · · · [vn]B′

]
(the columns of M are the B ′ coordinates of the basis B)
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Linear Transformations
Coordinate Change
More on Change of Basis

Example

B =

{[
1
2

]
,

[
−1
1

]}
B ′ =

{[
3
1

]
,

[
5
2

]}
are basis of R2, indeed the corresponding transition matrices from standard
basis:

P =

[
1 −1
2 1

]
Q =

[
3 5
1 2

]
have det(P) = 3, det(Q) = 1. Hence, lin. indep. vectors.
We are given

[x]B =

[
4
−1

]
B

find its coordinates in B ′.
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Example (cntd)

1. find first the standard coordinates of x

x = 4
[
1
2

]
−
[
−1
1

]
=

[
1 −1
2 1

] [
4
−1

]
=

[
5
7

]
and then find B ′ coordinates:

[x]S = Q−1x =

[
2 −5
−1 3

] [
5
7

]
=

[
−25
16

]
S

2. use transition matrix M from B to B ′ coordinates:
v = P[v]B and v = Q[v]B′  [v]B′ = Q−1P[v]B :

M = Q−1P =

[
2 −5
−1 3

] [
1 −1
2 1

]
=

[
−8 −7
5 4

]

[x]B′ =
[
−8 −7
5 4

] [
4
−1

]
=

[
−25
16

]
B′
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Linear Transformations
Coordinate Change
More on Change of BasisChange of Basis for a Lin. Transf.

We saw how to find A for a transformation T : Rn → Rm using standard
basis in both Rn and Rm. Now: is there a matrix that represents T wrt two
arbitrary bases B and B ′?
Theorem
Let T : Rn → Rm be a linear transformation
and B = {v1, v2, . . . , vn} and B ′ = {v′1, v′2, . . . , v′n} be bases of Rn and Rm.
Then for all x ∈ Rn, [T (x)]B′ = M[x]B
where M = A[B,B′] is the m × n matrix with the ith column equal to
[T (vi )]B′ , the coordinate vector of T (vi ) wrt the basis B ′.

Proof:
change B to standard x = Pn×n

B [x]B ∀x ∈ Rn

↓
perform linear transformation T (x) = Ax = APn×n

B [x]B
in standard coordinates

↓
change to basis B ′ [u]B′ = (Pm×m

B′ )−1u ∀u ∈ Rm

[T (x)]B′ = (Pm×m
B′ )−1APn×n

B [x]B
M = (Pm×m

B′ )−1APn×n
B 32



Linear Transformations
Coordinate Change
More on Change of Basis

How is M done?

• PB = [v1 v2 . . . vn]

• APB = A[v1 v2 . . . vn] = [Av1 Av2 . . . Avn]

• Avi = T (vi ): APB = [T (v1) T (v2) . . . T (vn)]

• M = P−1
B′ APB = [P−1

B′ T (v1) P−1
B′ T (v2) . . . P−1

B′ T (vn)]

• M = [[T (v1)]B′ [T (v2)]B′ . . . [T (vn)]B′ ]

Hence, if we change the basis from the standard basis of Rn and Rm the
matrix representation of T changes
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Linear Transformations
Coordinate Change
More on Change of BasisSimilarity

Particular case m = n:

Theorem
Let T : Rn → Rn be a linear transformation
and B = {x1, x2, . . . , xn} be a basis Rn.
Let A be the matrix corresponding to T in standard coordinates: T (x) = Ax.
Let

P =
[
x1 x2 · · · xn

]
be the matrix whose columns are the vectors of B. Then for all x ∈ Rn,

[T (x)]B = P−1AP[x]B

Or, the matrix A[B,B] = P−1AP performs the same linear transformation as
the matrix A but expressed it in terms of the basis B.
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Linear Transformations
Coordinate Change
More on Change of BasisSimilarity

Definition

A square matrix C is similar (represent the same linear transformation) to the
matrix A if there is an invertible matrix P such that

C = P−1AP.

Similarity defines an equivalence relation:

• (reflexive) a matrix A is similar to itself

• (symmetric) if C is similar to A, then A is similar to C
C = P−1AP, A = Q−1CQ, Q = P−1

• (transitive) if D is similar to C , and C to A, then D is similar to A
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Example

2−2

1

−1

x

y

2−2

1

−1

x

y

• x2 + y2 = 1 circle in standard form

• x2 + 4y2 = 4 ellipse in standard form

• 5x2 + 5y2 − 6xy = 2 ??? Try rotating π/4 anticlockwise

AT =

[
cos θ − sin θ
sin θ cos θ

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]
= P

v = P[v]B ⇐⇒
[
x
y

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
X
Y

]
X 2 + 4Y 2 = 1



Linear Transformations
Coordinate Change
More on Change of Basis

Example

Let T : R2 → R2:

T
([

x
y

])
=

[
x + 3y
−x + 5y

]
What is its effect on the xy -plane?
Let’s change the basis to

B = {v1, v2} =
{[

1
1

]
,

[
3
1

]}
Find the matrix of T in this basis:

• C = P−1AP, A matrix of T in standard basis, P is transition matrix
from B to standard

C = P−1AP =
1
2

[
−1 3
1 −1

] [
1 3
−1 5

] [
1 3
1 1

]
=

[
4 0
0 2

]
37



Linear Transformations
Coordinate Change
More on Change of Basis

Example (cntd)

• the B coordinates of the B basis vectors are

[v1]B =

[
1
0

]
B
, [v2]B =

[
0
1

]
B

• so in B coordinates T is a stretch in the direction v1 by 4 and in dir. v2
by 2:

[T (v1)]B =

[
4 0
0 2

] [
1
0

]
B
=

[
4
0

]
B
= 4[v1]B

• The effect of T is however the same no matter what basis, only the
matrices change! So also in the standard coordinates we must have:

Av1 = 4v1 Av2 = 2v2
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Linear Transformations
Coordinate Change
More on Change of BasisSummary

• Linear transformations and proofs that a given mapping is linear

• two-way relationship between matrices and linear transformations

• change from standard (S) to arbitrary basis (B)

• change of basis between two arbitrary basis (from B to B ′)

• Matrix representation of a transformation with respect to two arbitrary
basis

• Similarity of square matrices
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