DM559/DM545 -- Linear and Integer ProgrammingGuidelines
Tools for digitalizing solutionsBeing acquainted with some of these tools (or their equivalent in your system) would help you to digitalize your solutions more easily and faster:
\begin{align}
\label{ob} \max \; \quad & \sum_{j=1}^nc_jx_j \\
\label{c1} \mbox{s.t.} \quad &\sum\limits_{j=1}^n a_{ij}x_j\geq b_i,
\quad i=1,\ldots,m \\
\label{c2} &x_j \geq 0, \quad j=1,\ldots,n
\end{align}
\begin{align} \label{ob} \max \; \quad & \sum_{j=1}^nc_jx_j \\ \label{c1} \mbox{s.t.} \quad &\sum\limits_{j=1}^n a_{ij}x_j\geq b_i, \quad i=1,\ldots,m \\ \label{c2} &x_j \geq 0, \quad j=1,\ldots,n \end{align}
\begin{array}{lrll}
\max & \sum\limits_{j=1}^nc_jx_j\\
&\sum\limits_{j=1}^n a_{ij}x_j&\leq b_i,& i=1,\ldots,m\\
&x_j&\geq 0,& j=1,\ldots,n
\end{array}
\begin{array}{lrll} \max & \sum\limits_{j=1}^nc_jx_j\\ &\sum\limits_{j=1}^n a_{ij}x_j&\leq b_i,& i=1,\ldots,m\\ &x_j&\geq 0,& j=1,\ldots,n \end{array} \[\max \sum_{j=1}^nc_jx_j\] \[\sum_{j=1}^n a_{ij}x_j\leq b_i, i=1,\ldots,m\] \[x_j\geq 0, j=1,\ldots,n\] \begin{equation}\label{ob} \max \sum_{j=1}^nc_jx_j\\ \end{equation} \begin{equation}\label{c1} \sum_{j=1}^n a_{ij}x_j\leq b_i, i=1,\ldots,m\\ \end{equation} \begin{equation}\label{c2} x_j\geq 0, j=1,\ldots,n \end{equation} Created: 2017-06-09 Fri 16:47 |