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• This is the midterm assignment of Discrete Optimization focused on constraint programming. The
assignment will be graded and will account for 50% of the final grade.

• The assignment has to be carried out individually.

• The submission is electronic via http://valkyrien.imada.sdu.dk/DOApp/.

• You have to hand in:

– the source code of your implementation in Gecode. Try to keep all your implementation in the
main.cpp file and submit that file only. If you need to include more files then make a .tgz archive
containing only .h and .cpp files and submit that one. For other issues contact the teacher.

– A report that describes the work you have done and presents the results obtained. The document
should not exceed 10 pages and must be in PDF format. You can list source code but only small
relevant parts. You can write in Danish or in English.

• Make your submissions anonymous. The submission system will rename your files with the identifier
that you will see on the page and your identity will be retrieved after the grading has been done.

• Changes to this document after its first publication on November 6th may occur if needed. They will
be emphasized in color and if they are major they will be announced via BlackBoard.

• Read all this document before you start to work. However, Section 2 is not relevant.

1 The Problem

A board consists of N × N cells arranged in an N × N grid. Each cell is connected to at most eight neighbors
along the four axes: vertical, horizontal and two diagonal. A wrap-around board has connections also between
the left-most and right-most columns and between the top and bottom rows.
For two strings s and r of K bits b1b2 . . . bK with bi ∈ {0, 1} the Hamming distance d(s, r) is the number of
bits at which the two strings differ.
Given a wrap-around board N× N and an integer D ∈ Z+, we wish to find an assignment of distinct strings
all made of K ≥ d2 log2 Ne binary bits to each cell of the board in such a way that the maximal Hamming
distance between any pair of neighboring cells is smaller than or equal to D. In the optimization sense, given
a wrap-around board N × N we wish to determine the smallest D for which such assignment exists.
For example, the board 4× 4 with bit strings of length K = d2 log2(4)e = 4 admits a solution for D = 2 (see
Figure 1) but it does not admit one for D = 1. Hence, D = 2 is the best possible maximal Hamming distance
for this case. The binary strings can be represented by integer numbers in base-10 in which case we wish to
assign to each of the N2 cells a distinct integer from Z2K .
In the following we will identify an instance of the problem by the triple (N, K, D).

1111 0101 1100 0110

0111 1101 0100 1110

1011 0001 1000 0010

0011 1001 0000 1010

15 5 12 6

7 13 4 14

11 1 8 2

3 9 0 10

Figure 1: An assignment with D = 2 for the 4× 4 board. On the left the binary strings disposed on the board;
on the right the representation of the strings in base-10.
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2 Background

The NK-model problem defined above was motivated by the following application. A current focus in
management science is the investigation of human decision-making when searching for new alternatives.
Experimental work in this area uses the NK model of rugged performance landscapes [2].
The NK model defines a combinatorial search space, consisting of all possible (binary) string of length N. For
each string in this search space, a scalar value, called the fitness, is defined. If a distance metric is also defined
between strings, the resulting structure is a landscape. Fitness values are defined according to a specific
model, but the key feature of the NK model is that the fitness of a given string s is the sum of contributions
from each bit (locus) bi in the string:

F(s) =
N

∑
i=1

f (bi)

and the contribution from each bit in general depends on the bit itself and the value of K other bits:

f (bi) = f (bi, bi1 , . . . , biK )

where bij are the other bits upon which the fitness of bi depends. Hence, the fitness function is a mapping
between strings of length K + 1 and scalar values. (Source: http://en.wikipedia.org/wiki/NK_model.) An
example of NK landscapes at varying K is given in Figure 2.
In experiments within management science, human subjects are asked to search for high-performing product
configurations. They combine N attributes — the N parameter in the NK model — to specify a product con-
figuration. The value or payoff of a particular configuration is initially unknown and is only discovered after
trying out the configuration. The complexity of alternatives — the K parameter — is captured by allowing
for interactions among the attributes in the payoff function. As complexity increases and interactions among
attributes proliferate, the problem of finding a high-performing configuration becomes more challenging and
difficult. The subjects in the experiments have only a limited number of search trials, far fewer than the
number of all possible configurations. The aim of the experiments is then studying the opportunity cost
of searching a new alternative varying the experimental treatment of the complexity K of the performance
landscape.
A dominant search strategy detected in the experiments is neighborhood search: the move to another position
occurs by changing from 1 to 3 attributes. More specifically, for N = 10, experiments showed that out of
7539 active searches, 75.9% were within distance 3 from the current position with an average distance of
2.53, 84.5% within distance 4 and 90.3% within distance 5. In other terms, humans do not change radically
the attributes available but perform local changes. Other observations show the importance of performance
feedback [1].
Given these results there is interest to design an experiment in which the distance factor is removed. In other
terms, researchers in management science would like to have an NK model in which the user is given the
possibility to only move to new search states that are in the neighborhood of the current one. A way to
achieve this is to provide to the humans an easy graphical representation of the possible moves available. A
chess board in which moves are only allowed between neighboring cells seems well suited for this task. The
problem is then to dispose the 2K different search alternatives in the board in such a way that the maximum
distance between any pair of adjacent cells is minimized.

3 Known facts

Focusing on the case K = d2 log2 Ne, where the length of the strings is just the minimal needed to have a
different string for every cells of the board, Søren Haagerup, a former student of this course, has shown that:

1. the problem can be reformulated in terms of graphs as the problem of finding an embedding f of the
quadri-axial torus G in the Hamming graph H(K) with restricted dilation D. Since H has no clique of
size 3 but there are several cliques of size 3 in G then there exist no solution with D = 1 for any N.

2. there is an easy method to construct solutions with D = 2 for all N that are powers of 2, ie, N = 2i, for
i = 1, 2, 3, ...

3. for any N > 1 with 2dlog2(N)e = d2 log2(N)e, one can construct a solution with D = 2 if N is even and
with D = 4 if N is odd. Table 1 makes explicit these results for N up to 30.
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Figure 2: Different NK landscapes.

4 Open problems

• We do not know if the theoretical lower and upper bounds could get tighter for odd N and 2dlog2(N)e =
d2 log2(N)e. For example: Does there exist an odd N, with solutions for D = 2? The first case without
answer up to now is (N, K, D) = (7, 6, 2).

• For all N where 2dlog2(N)e 6= d2 log2(N)e can we get some upper bounds?

• Table 2 reports the best impossibility (lower bound) and possibility (upper bound) results for D when
K = d2 log(N)e. An assignment with the best known D has been found either by constructive method
or by computational methods such as integer programming and heuristics. Instances with an asterisks
are closed, that is the best possible D known is also the optimal.

5 Project Requirements

1. Formulate the NK-model problem in constraint programming terms using finite domain integer vari-
ables. Focus on the decision version of the problem that asks whether there exists a solution if the
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N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2dlog2(N) 4 4 6 6 6 6 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
d2 log2(N)e 4 4 5 6 6 6 7 7 7 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10

UB 2 4 – 4 2 4 – – – 4 2 4 2 4 – – – – – – 2 4 2 4 2 4 2 4 2

Table 1: Upper bounds obtained by construction for N=2,...,30.

N K Impossible Possible
2 2 1 2 *
3 4 3 4 *
4 4 1 2 *
5 5 2 3 *
6 6 1 2 *
7 6 1 3
8 6 1 2 *
9 7 1 3

10 7 1 3
11 7 1 3
12 8 1 2 *
13 8 1 3
14 8 1 2 *
15 8 1 3
16 8 1 4
17 9 1 3
18 9 1 3
19 9 1 3
20 9 1 3

Table 2: Best known results in terms of D for instances with N from 2 to 20 and K = d2 log(N)e

maximum distance is fixed to D. Thus, an instance of the problem is fully determined by the triple
(N, K, D). [Models using set variables are also possible and you are welcome to test them and report
their results as a comparison but the primary goal here is to have a model with only integer variables.]

2. Implement the model in Gecode and report the essential parts of the code.

3. Experiment with different instances of the problem and different choices for the branching heuristics.
Since very little is known about the hardness of the instances focus on instances (N, K, D) with K =
d2 log(N)e, N = {2, . . . , 20}, and {D = 2, . . . , 10}. (If these instances turn out to be too easy you may
increase N).

4. List all the symmetries that you can recognize and handle them in your implementation either by
adding constraints before the search to or by using a dynamic procedure.

5. Study the impact of random restarts.

6. Report your (best) results in a table like Table 3. In the cell write the time in seconds that your model
needed to find a solution to the instance. Limit the run time of your algorithm to a maximum of 5
minutes for each (N, K, D) instance.1

7. Describe the work in the previous points in a report of at most 10 pages (use font size of 11pt and 3cm
margins).

6 Solution checker

A program to verify your solutions is available at:

http://www.imada.sdu.dk/~marco/DM841/Files/checker.cpp

1Times refer to machines in IMADA terminal room.
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1 2 3 4 5 6 7 8 9 10
1 – – – – – – – – – –
2 – – – – – – – – – –
3 – – – – – – – – – –
4 – – – – – – – – – –
5 – – – – – – – – – –
6 – – – – – – – – – –
7 – – – – – – – – – –
8 – – – – – – – – – –
9 – – – – – – – – – –

10 – – – – – – – – – –
11 – – – – – – – – – –
12 – – – – – – – – – –
13 – – – – – – – – – –
14 – – – – – – – – – –
15 – – – – – – – – – –
16 – – – – – – – – – –
17 – – – – – – – – – –
18 – – – – – – – – – –
19 – – – – – – – – – –
20 – – – – – – – – – –

Table 3: Example of table for presenting the final results: on the rows N and on the columns D.

Your program must output the solution in a text file with one number per line. The number represents
the binary string in decimal representation assigned to each cell of the board sorted by visited the board in
row-wise order.
Compile the checker program with

g++ checker.cpp -o checker

and run the program with

checker -n 16 -k 8 -d 2 -c 16-8-2.sol

The file 16-8-2.sol is also available at:

http://www.imada.sdu.dk/~marco/DM841/Files/16-8-2.sol
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