
DM841
DISCRETE OPTIMIZATION

Introduction to Gecode

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Christian Schulte, KTH Royal Institute of Technology]

Constraint Languages
GecodeOutline

1. Constraint Languages

2. Gecode

2

Constraint Languages
GecodeResume

I Modelling in CP

I Examples: graph labelling with consecutive numbers, cryptoarithmetic

I Overview on Constraint Programming
I modelling
I search = backtracking + branching
I propagate (inference) + filtering

Constraint Programming:
representation (modeling language) + reasoning (search + propagation)

3

Constraint Languages
GecodeOutline

1. Constraint Languages

2. Gecode

4

Constraint Languages
GecodeConstraint Programming Systems

(modeling)
Expressive language stream

+
(efficient solvers)
Algorithm stream

CP systems typically include

I general purpose algorithms for constraint propagation
(arc consistency on finite domains)

I built-in constraint propagation for various constraints
(eg, linear, Boolean, global constraints)

I built-in for constructing various forms of search

5

Constraint Languages
GecodeLogic Programming

Logic programming is the use of mathematical logic for computer
programming.

First-order logic is used as a purely declarative representation language, and a
theorem-prover or model-generator is used as the problem-solver.

Logic programming supports the notion of logical variables
I Syntax – Language

I Alphabet
I Well-formed Expressions

E.g., 4X + 3Y = 10; 2X - Y = 0
I Semantics – Meaning

I Interpretation
I Logical Consequence

I Calculi – Derivation
I Inference Rule
I Transition System

6

Constraint Languages
GecodeLogic Programming

Example: Prolog
A logic program is a set of axioms, or rules, defining relationships
between objects.

A computation of a logic program is a deduction of consequences of
the program.

A program defines a set of consequences, which is its meaning.

Sterling and Shapiro: The Art of Prolog, Page 1.

To deal with the other constraints one has to add other constraint solvers to
the language. This led to Constraint Logic Programming

7

Constraint Languages
GecodeProlog Approach

I Prolog II till Prolog IV [Colmerauer, 1990]

I CHIP V5 [Dincbas, 1988] http://www.cosytec.com (commercial)

I CLP [Van Hentenryck, 1989]

I Ciao Prolog (Free, GPL)

I GNU Prolog (Free, GPL)

I SICStus Prolog

I ECLiPSe [Wallace, Novello, Schimpf, 1997] http://eclipse-clp.org/
(Open Source)

I Mozart programming system based on Oz language (incorporates
concurrent constraint programming) http://www.mozart-oz.org/
[Smolka, 1995]

8

http://www.cosytec.com
http://eclipse-clp.org/
http://www.mozart-oz.org/

Constraint Languages
GecodeOther Approaches

Libraries:
Constraints are modeled as objects and are manipulated by means of special
methods provided by the given class.

I CHOCO (free) http://choco.sourceforge.net/

I Kaolog (commercial) http://www.koalog.com/php/index.php

I ILOG CP Optimizer www.cpoptimizer.ilog.com (ILOG, commercial)

I Gecode (free) www.gecode.org
C++, Programming interfaces Java and MiniZinc

I G12 Project
http://www.nicta.com.au/research/projects/constraint_

programming_platform

9

www.cpoptimizer.ilog.com
www.gecode.org
http://www.nicta.com.au/research/projects/constraint_programming_platform
http://www.nicta.com.au/research/projects/constraint_programming_platform

Constraint Languages
GecodeOther Approaches

Modelling languages:

I OPL [Van Hentenryck, 1999] ILOG CP Optimizer
www.cpoptimizer.ilog.com (ILOG, commercial)

I MiniZinc [] (open source, works for various systems, ECLiPSe, Geocode)

I Comet

I AMPL

10

www.cpoptimizer.ilog.com

Constraint Languages
Gecode

I Catalogue of Constraint Programming Tools:
http://openjvm.jvmhost.net/CPSolvers/

I Workshop "CPSOLVERS-2013"
http://cp2013.a4cp.org/node/99

11

http://openjvm.jvmhost.net/CPSolvers/
http://cp2013.a4cp.org/node/99

Constraint Languages
GecodeCP Languages

Greater expressive power than mathematical programming

I constraints involving disjunction can be represented directly

I constraints can be encapsulated (as predicates) and used in the
definition of further constrains

However, CP models can often be translated into MIP model by

I eliminating disjunctions in favor of auxiliary Boolean variables

I unfolding predicates into their definitions

12

Constraint Languages
GecodeCP Languages

I Fundamental difference to LP
I language has structure (global constraints)
I different solvers support different constraints

I In its infancy

I Key questions:
I what level of abstraction?

I solving approach independent: LP, CP, ...?
I how to map to different systems?

I Modeling is very difficult for CP
I requires lots of knowledge and tinkering

13

Constraint Languages
GecodeSummary

I Model your problem via Constraint Satisfaction Problem

I Declare Constraints + Program Search

I Constraint Propagation

I Languages

14

Constraint Languages
GecodeOutline

1. Constraint Languages

2. Gecode

15

Gecode
an open constraint solving library

Christian Schulte
KTH Royal Institute of Technology, Sweden

Gecode People
� Core team

� Christian Schulte, Guido Tack, Mikael Z. Lagerkvist.

� Code
� contributions: Christopher Mears, David Rijsman, Denys Duchier, Filip Konvicka, Gabor

Szokoli, Gabriel Hjort Blindell, Gregory Crosswhite, Håkan Kjellerstrand, Joseph Scott,
Lubomir Moric, Patrick Pekczynski, Raphael Reischuk, Stefano Gualandi, Tias Guns,
Vincent Barichard.

� fixes: Alexander Samoilov, David Rijsman, Geoffrey Chu, Grégoire Dooms, Gustavo
Gutierrez, Olof Sivertsson, Zandra Norman.

� Documentation
� contributions: Christopher Mears.
� fixes: Seyed Hosein Attarzadeh Niaki, Vincent Barichard, Pavel Bochman, Felix Brandt,

Markus Böhm, Roberto Castañeda Lozano, Gregory Crosswhite, Pierre Flener, Gustavo
Gutierrez, Gabriel Hjort Blindell, Sverker Janson, Andreas Karlsson, Håkan Kjellerstrand,
Chris Mears, Benjamin Negrevergne, Flutra Osmani, Max Ostrowski, David Rijsman, Dan
Scott, Kish Shen.

G
ec

od
e,

 C
hr

is
ti

an
 S

ch
ul

te

2

Se
pt

em
be

r 2
01

3

Gecode
Generic Constraint Development Environment
� open

� easy interfacing to other systems
� supports programming of: constraints, branching strategies, search

engines, variable domains

� comprehensive
� constraints over integers, Booleans, sets, and floats

� different propagation strength, half and full reification, …

� advanced branching heuristics (accumulated failure count, activity)
� many search engines (parallel, interactive graphical, restarts)
� automatic symmetry breaking (LDSB)
� no-goods from restarts
� MiniZinc support

Ge
co

de
, C

hr
ist

ia
n

Sc
hu

lte

3

Se
pt

em
be

r 2
01

3

Gecode
Generic Constraint Development Environment
� efficient

� all gold medals in all categories at all MiniZinc Challenges

� documented
� tutorial (> 500 pages) and reference documentation

� free
� MIT license, listed as free software by FSF

� portable
� implemented in C++ that carefully follows the C++ standard

� parallel
� exploits multiple cores of today's hardware for search

� tested
� some 50000 test cases, coverage close to 100%

Ge
co

de
, C

hr
ist

ia
n

Sc
hu

lte

4

Se
pt

em
be

r 2
01

3

SOME BASIC FACTS

Se
pt

em
be

r 2
01

3
Ge

co
de

, C
hr

ist
ia

n
Sc

hu
lte

5

Architecture

� Small domain-independent kernel
� Modules

� per variable type: variables, constraint, branchings, …
� search, FlatZinc support, …

� Modeling layer
� arithmetic, set, Boolean operators; regular expressions; matrices, …

� All APIs are user-level and documented (tutorial + reference)

Se
pt

em
be

r 2
01

3
Ge

co
de

, C
hr

ist
ia

n
Sc

hu
lte

6

integers sets floats search
engines

Gist
interactive search

tool

modeling layer

Gecode kernel

Openness
� MIT license permits commercial, closed-source use

� motivation: public funding, focus on research
� not a reason: attitude, politics, dogmatism

� More than a license
� license restricts what users may do
� code and documentation restrict what users can do

� Modular, structured, documented, readable
� complete tutorial and reference documentation
� new ideas from Gecode available as scientific publications

� Equal rights: Gecode users are first-class citizens
� you can do what we can do: APIs
� you can know what we know: documentation
� on every level of abstraction

Ge
co

de
, C

hr
ist

ia
n

Sc
hu

lte

7

Se
pt

em
be

r 2
01

3

Constraints in Gecode
� Constraint families

� arithmetics, Boolean, ordering, ….
� alldifferent, count (global cardinality, …), element, scheduling, table

and regular, sorted, sequence, circuit, channel, bin-packing, lex,
geometrical packing, nvalue, lex, value precedence, …

� Families
� many different variants and different propagation strength

� All global constraints from MiniZinc have a native
implementation

� Gecode  Global Constraint Catalogue: > 70 constraints
 abs_value, all_equal, alldifferent, alldifferent_cst, among, among_seq, among_var, and, arith, atleast, atmost,

bin_packing, bin_packing_capa, circuit, clause_and, clause_or, count, counts, cumulative, cumulatives,
decreasing, diffn, disjunctive, domain, domain_constraint, elem, element, element_matrix, eq, eq_set,
equivalent, exactly, geq, global_cardinality, gt, imply, in, in_interval, in_intervals, in_relation, in_set, increasing,
int_value_precede, int_value_precede_chain, inverse, inverse_offset, leq, lex, lex_greater, lex_greatereq,
lex_less, lex_lesseq, link_set_to_booleans, lt, maximum, minimum, nand, neq, nor, not_all_equal, not_in, nvalue,
nvalues, or, roots, scalar_product, set_value_precede, sort, sort_permutation, strictly_decreasing,
strictly_increasing, sum_ctr, sum_set, xor

G
ec

o
d

e,
 C

h
ri

st
ia

n
 S

ch
u

lt
e

8

Se
p

te
m

b
er

 2
0

1
3

History
� 2002

� development started

� 1.0.0 43 kloc, 21 klod
� December 2005

� 2.0.0 77 kloc, 41 klod
� November 2007

� 3.0.0 81 kloc, 41 klod
� March 2009

� 4.0.0 164 kloc, 69 klod
� March 2013

� 4.2.0 (current) 168 kloc, 71 klod
� July 2013

Se
pt

em
be

r 2
01

3
Ge

co
de

, C
hr

ist
ia

n
Sc

hu
lte

9

34 releases

Tutorial Documentation
� 2002

� development started

� 1.0.0 43 kloc, 21 klod
� December 2005

� 2.0.0 77 kloc, 41 klod
� November 2007

� 3.0.0 81 kloc, 41 klod
� March 2009

� 4.0.0 164 kloc, 69 klod
� March 2013

� 4.2.0 (current) 168 kloc, 71 klod
� July 2013

Se
pt

em
be

r 2
01

3
Ge

co
de

, C
hr

ist
ia

n
Sc

hu
lte

10

Modeling with Gecode (98 pages)

Modeling & Programming with Gecode (522 pages)

Future
� Large neighborhood search and other meta-heuristics

� contribution expected

� Simple temporal networks for scheduling
� contribution expected

� More expressive modeling layer on top of libmzn
� Grammar constraints

� contribution expected

� Propagator groups
� …

� Contributions anyone?

Ge
co

de
, C

hr
ist

ia
n

Sc
hu

lte

11

Se
pt

em
be

r 2
01

3

Deployment & Distribution
� Open source ≠ Linux only

� Gecode is native citizen of: Linux, Mac, Windows

� High-quality
� extensive test infrastructure (around 16% of code base)

� Downloads from Gecode webpage
� software: between 25 to 125 per day (total > 40000)
� documentation: between 50 to 300 per day

� Included in
� Debian, Ubuntu, Fedora, OpenSUSE, Gentoo, FreeBSD, …

Ge
co

de
, C

hr
ist

ia
n

Sc
hu

lte

18

Se
pt

em
be

r 2
01

3

Integration & Standardization
� Why C++ as implementation language?

� good compromise between portability and efficiency
� good for interfacing
 well demonstrated

� Integration with XYZ…
� Gecode empowers users to do it
� no “Jack of all trades, master of none”
 well demonstrated

� Standardization
� any user can build an interface to whatever standard…
� systems are the wrong level of abstraction for standardization
� MiniZinc and AMPL are de-facto standards

Se
pt

em
be

r 2
01

3
G

ec
od

e,
 C

hr
is

ti
an

 S
ch

ul
te

19

	Constraint Languages
	Gecode

