DM841
DISCRETE OPTIMIZATION

Elements of C4++

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

C+-+ Features

» Declaration of a function or class that does not include a body only
types (function prototype)

» Definition: declaration of a function that does include a body
(implementation)

» Pointer variable: a variable that stores the address where another object
resides: int *m = nullptr;

» Dynamic allocation via new operator. No garbage collector, we must free
the memory via delete. Otherwise the memory is lost: Memory leak.

> Address-of operator: (&) (declares an Ivalue reference, && declares
rvalue reference, eg, x+vy, “foo”, 2; if an object has a name then it is an
lvalue).

for(auto x: arr) for(auto & x: arr)
++x; \\ broken: assumes copy ++x; // increment by one, ok!

C+-+ Features

Parameter passing:

>

call-by-value:

double average(double a, double b);

double z = average(x, y)

call-by-(lvalue)-reference:

void swap(double & a, double & b);

swap(X, y)

call-by-reference-to-a-constant (or call-by-constant reference):

string randomItem(const vector<string> & arr);

. Call-by-value is appropriate for small objects that should not be altered

by the function

Call-by-constant-reference is appropriate for large objects that should not
be altered by the function and are expensive to copy

Call-by-reference is appropriate for all objects that may be altered by the
function

Temporary elements that are about to be destroyed can be passed by a
call-by-rvalue-reference:

string randomItem(const vector<string> & arr);
string randomItem(vector<string> && arr);

vector<string> v { "hello", "world" };
cout << randomItem(v) << endl;
cout << randomItem({ "hello", "world" }) << endl;

Often used in overloading of = operator, that can be implemented by a copy
or a move

Return passing

LargeType randomIteml(const vector<LargeType > & arr)

return arr[randomInt(0, arr.size() - 1) I;
}
const LargeType & randomItem2(const vector<LargeType > & arr)
{
return arr[randomInt(0, arr.size() - 1)];
}
vector<LargeType> vec;

LargeType iteml
LargeType item2
const LargeType

—reference

&

randomIteml(vec); // copy, return—by—value
randomItem2(vec); // copy
item3 = randomItem2(vec); // no copy, return—by—(Ivalue)—constant

Return passing

vector<int> partialSum(const vector<int> & arr)
{
vector<int> result(arr.size());
result[@ 1 = arr[0 [;
for (int i = 1; i < arr.size(); ++1)
result[i] = result[i-1] + arr[1 1;
return result;

}
vector<int> vec;

vector<int> sums = partialSum(vec); // copy in old C{+ move in G{+11

C+-+ Features

Encapsulation (functions in the class as opposed to C)

» Constructors

v

vV v v v

Rule of three: destructor, copy constructor, copy assignment operator
(move constructor, move assignment)

Public and private parts (and protected)
Templates
STL: vector

(Some functions C-like: string.c_str() needed to transform a string
in char array as in C)

Passing Objects

> In C++ objects are passed:

> by value F(A x)
> by reference F (A& x)

» In java objects are passed by reference, F(A& x)

In C++: F(const A& x) pass the object but do not change it.

If F(A& x) const the function does not change anything

Passing Objects

> In C++ objects are passed:

> by value F(A x)
> by reference F (A& x)

» In java objects are passed by reference, F(A& x)

In C++: F(const A& x) pass the object but do not change it.

If F(A& x) const the function does not change anything

Compare:

% vector<string> int2crs;
string Input::operator[](unsigned i) const { return int2crs[i]; }
string& Input::operator[](unsigned i) { return int2crs[i]; }

Inheritance

vV V. V. vV YV vV VYV VY

General idea: extension of a class

Example with A and B (next slide)

Access level protected: only derived classes can see

Hidden spaces: syntax with :: (double colon), eg std: : cout
Hidden fields: syntax with :: (double colon), eg A: :al
Hidden methods (rewritten)

Types of inheritance: public, private, and protected

Invocation of constructors with inheritance: use of :

Compatibility between base class and derived class (asymmetric)

#include <iostream>

class A

{

public:
A(int pl, double p2) { al = pl; a2 = p2; }
int M1() const { return al; }
double a2;

protected: //not private

int al;

};

class B : public A

{

public:
B(int pl, double p2, unsigned p3) : A(pl,p2) { bl = p3; }
unsigned B1() const { return bl; }
void SetAl(int f) { al =f; }

private:

unsigned bl;

};

int main() // or (int argc, charx argv[])
{

A x(1, 3.4);
B y(-4, 2.3, 10);

y.SetA1(-23);
std::cout << y.a2 << " " << y.MI() << std::endl; // 2.3 —23
return 0;

Polymorphism

One of the key features of class inheritance is that a pointer to a derived
class is type-compatible with a pointer to its base class.

#include <iostream>
using namespace std;

class Polygon {
protected:
int width, height;
public:

{ width=a; height=b; }
Y

class Rectangle: public Polygon {
public:
int area()
{ return widthxheight; }
};

class Triangle: public Polygon {
public:
int area()
{ return widthxheight/2; }

i

void set_values (int a, int b)

int main () {
Rectangle rect;
Triangle trgl;
Polygon * ppolyl = ▭
Polygon * ppoly2 = &trgl;
ppolyl->set_values (4,5);
ppoly2->set_values (4,5);

cout << rect.area() << ’"\n’

i // 20

cout << trgl.area() << “\n’; // 10

return 0;

11

Polymorphism

#include <iostream>
using namespace std;

class Polygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b; }
virtual int area() {return 0;}

};
class Rectangle: public Polygon {
public:
Rectangle(int a, int b) {width=a;
height=b;}
int area()
{ return widthxheight; }
1
class Triangle: public Polygon {
public:
Triangle(int a, int b) {width=a;
height=b;}
int area()

{ return widthxheight/2; }
}i

int main () {
Polygon * ppolyl = new Rectangle (4,5)

Polygon * ppoly2 = new Triangle (4,5);
cout << ppolyl->area() << ’"\n’;

cout << ppoly2->area() << ’"\n’;
delete ppolyl;

delete ppoly2;

return 0;

12

Virtual functions

Compatibility in case of redefined methods
Late binding

Pure virtual functions

vV vV v v

Abstract classes

13

Redefinition M1

class A {
int M1() {return al;}
int al

}

class B {
int M1() {return al;}
int al;

}

Aa(,);
B b(,,);
x=b.M1();

cout<<x<<" "<<a.M1()<<endl;

14

Virtual functions

void F(A a) {
}

Ax(,);
By(,,);

F(y);

It calls method from class A. It copies an object of class B in A by removing
what y had more. It doesn't even know that A exists

void F(A& a)

function for class A
It is not obvious which one of A or B it is going to use.
Eg. Persons (A) and student (B)

Methods are of two types:
» Final (in java) methods
» Virtual methods
If F is a virtual method it calls the last one defined.
Virtual ~~ Late binding makes binding between F and M late, ie, at execution

time.
15

Pure virtual functions

We can have that the function is undefined in the parent class:

virtual int H() = 0;

pure virtual function, virtual function that is not defined but only redefined.

A becomes an abstract class hence we cannot define an object of class A. Like
interfaces in java. There everything is virtual, here it is mixed.

Why? | might have different subclasses that implement the functions in
different ways.

16

class A {
public:
A(int pl, double p2) { al = pl; a2 = p2; }
virtual int M1() const { cout << "A::M1"; return al; }
double a2;
virtual int H() = 0;
protected:
int al;
}

class B : public A {
public:
B(int pl, double p2, unsigned p3) : A(pl,p2) { bl = p3; }
unsigned B1() const { return bl; }
void SetAl(int f) { A::al = f; }
int M1() const { cout << "B::M1"; return a2; }
protected:
unsigned bl;
vector<float> al;
Y

void F(A& a) {
cout << a.M1() << endl;

}

int main() {
A x(1,3.4);
B y(-4,2.3,10);
Fy);
return 0;

}

Abstract Classes

They are classes that can only be used as base classes, and thus are allowed

to have pure virtual member functions.

#include <iostream>
// abstract base class
#include <iostream>
using namespace std;

class Polygon {
protected:
int width, height;
public:
void set_values (int a, int b)
{ width=a; height=b; }
virtual int area (void) =0;
};

class Rectangle: public Polygon {
public:
int area (void)
{ return (width * height); }
i

class Triangle: public Polygon {
public:
int area (void)
{ return (width * height / 2); }

};

o~

int main () {
Rectangle rect;
Triangle trgl;
Polygon mypolygon; // not working if
Polygon is abstract base class
Polygon * ppolyl = ▭
Polygon * ppoly2 = &trgl;

ppolyl->set_values (4,5);
ppoly2->set_values (4,5);
cout << ppolyl->area() << ’"\n’;
cout << ppoly2->area() << “\n’;

return 0;

18

Casting

C++ is a strongly-typed language. Conversions, specially those that imply a
different interpretation of the value, must be explicit, type-casting.
Note:

unsigned a,b;
unsigned x = abs((int) a - (int) b);
unsigned x = abs(static_cast<int> a - static_cast<int> b);

static_cast<int> instead of (int) (C-like syntax)
If used with pointers, no checks are performed during runtime to guarantee

that the object being converted is in fact a full object of the destination type.

Therefore, it is up to the programmer to ensure that the conversion is safe.

dynamic_cast<int>

can only be used with pointers and references to classes (or with void*). Its
purpose is to ensure that the result of the type conversion points to a valid
complete object of the destination pointer type.

Example: pointer upcast (converting from pointer-to-derived to
pointer-to-base); pointer downcast (convert from pointer-to-base to
pointer-to-derived) polymorphic classes (those with virtual members) if -and
only if- the pointed object is a valid complete object of the target type.
Require run time checking and it is therefore more costly.

19

Templates

Generic programming

template <class T>
class mypair {
T values [2];
public:
mypair (T first, T second)

values[0]=first; values[l]=second;
}
};

(must be fully defined in the header files.)

mypair<int> myobject (115, 36);
mypair<double> myfloats (3.0, 2.18);

20

