
DM841
DISCRETE OPTIMIZATION

Global constraints (2/2)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Global ConstraintsOutline

1. Global Constraints

2



Global ConstraintsOutline

1. Global Constraints

3



Global ConstraintsGlobal Constraint: among and sequence

among

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers

among([x1, ..., xn], S , l , u)

At least l and at most u of variables take values in S .
In Gecode: count

sequence

Let x1, . . . , xn be a tuple of variables, S a set of variables, and l and u two
nonnegative integers, s a positive integer.

sequence([x1, ..., xn], S , l , u, s)

At least l and at most u of variables take values from S in s consecutive
variables
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Global ConstraintsCar Sequencing Problem

Car Sequencing Problem
I an assembly line makes 50 cars a day
I 4 types of cars
I each car type is defined by options: {air conditioning, sun roof}

type air cond. sun roof demand
a no no 20
b yes no 15
c no yes 8
d yes yes 7

I at most 3 cars in any sequence of 5 can be given air conditioning
I at most 1 in any sequence of 3 can be given a sun roof

Task: sequence the car types so as to meet demands while observing
capacity constraints of the assembly line.
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Global ConstraintsCar Sequencing Problem

Sequence constraints
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Global ConstraintsCar Sequencing Problem: CP model

Car Sequencing Problem

Let ti be the decision variable that indicates the type of car to assign to each
position i in the sequence.

cardinality([t1, . . . , t50], (a, b, c , d), (20, 15, 8, 7), (20, 15, 8, 7))

among([ti , . . . , ti+4], {b, d}, 0, 3), ∀i = 1..46
among([ti , . . . , ti+2], {c , d}, 0, 1), ∀i = 1..48
ti ∈ {a, b, c , d}, i = 1, . . . , 50.

Note: in Gecode among is count.
However, we can use sequence for the two among constraints above:

sequence([t1, . . . , t50], {b, d}, 0, 3, 5),

sequence([t1, . . . , t50], {c , d}, 0, 1, 3),
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Global ConstraintsCar Sequencing Problem: MIP model
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Global ConstraintsGlobal Constraint: nvalues

nvalues

Let x1, . . . , xn be a tuple of variables, and l and u two nonnegative integers

nvalues([x1, ..., xn], l , u)

At least l and at most u different values among the variables

 generalization of alldifferent
In Gecode: nvalues
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Global ConstraintsGlobal Constraint: stretch

stretch (In Gecode: via regular and extensional)

Let x1, . . . , xn be a tuple of variables with finite domains,
v an m-tuple of possible values of the variables,
l an m-tuple of lower bounds and u an m-tuple of upper bounds.
A stretch is a maximal sequence of consecutive variables that take the same
value, i.e., xj , . . . , xk for v if xj = . . . = xk = v and xj−1 6= v (or j = 1) and
xk+1 6= v (or k = n).

stretch([x1, ..., xn], v, l,u) stretch-cycle([x1, ..., xn], v, l,u)

for each j ∈ {1, . . . ,m} any stretch of value vj in x have length at least lj
and at most uj .

In addition:

stretch([x1, ..., xn], v, l,u,P)

with P set of patterns, i.e., pairs (vj , vj′). It imposes that a stretch of values
vj must be followed by a stretch of value vj′
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Global ConstraintsGlobal Constraint: element

“element” constraint
Let y be an integer variable,
z a variable with finite domain,
and c an array of constants, i.e., c = [c1, c2, . . . , cn].
The element constraint states that z is equal to the y -th variable in c , or
z = cy .
More formally:

element(y , z , [c1, . . . , cn]) = {(e, f ) | e ∈ D(y), f ∈ D(z), f = ce}.

� �
IntArgs c(5, 1,4,9,16,25);
element(home, c, x, y);� �
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Global ConstraintsAssignment problems

The assignment problem is to find a minimum cost assignment of m tasks to
n workers (m ≤ n).
Each task is assigned to a different worker, and no two workers are assigned
the same task.
If assigning worker i to task j incurs cost cij , the problem is simply stated:

min
∑

i=1,...,n

cixi

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on position. Recall: with n = m min weighted bipartite
matching (Hungarian method)
with supplies/demands transshipment problem
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Global ConstraintsGlobal Constraint: channel

“channel” constraint
Let x be an array of boolean variables and y be an integer variable:

channel([x1, . . . , xn], y) =

{([e1, . . . , en], d) | ei ∈ {0, 1},∀i , d ∈ D(y),∀j , ei = 1 ⇐⇒ d = i}.

“channel” constraint
Let y be array of integer variables, and x be an array of integer variables:

channel([y1, . . . , yn], [x1, . . . , xn]) =

{([e1, . . . , en], [d1, . . . , dn]) | ei ∈ D(yi ),∀i , dj ∈ D(xj),∀j , ei = j∧dj = i}.
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Global ConstraintsEmployee Scheduling problem

Four nurses are to be assigned to eight-hour shifts.
Shift 1 is the daytime shift, while shifts 2 and 3 occur at night.
The schedule repeats itself every week. In addition,
1. Every shift is assigned exactly one nurse.
2. Each nurse works at most one shift a day.
3. Each nurse works at least five days a week.
4. To ensure a certain amount of continuity, no shift can be staffed by

more than two different nurses in a week.
5. To avoid excessive disruption of sleep patterns, a nurse cannot work

different shifts on two consecutive days.
6. Also, a nurse who works shift 2 or 3 must do so at least two days in a

row.
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Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Solution viewed as assigning workers to shifts.

Sun Mon Tue Wed Thu Fri Sat
Shift1 A B A A A A A
Shift2 C C C B B B B
Shift3 D D D D C C D

Solution viewed as assigning shifts to workers.

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3
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Global ConstraintsEmployee Scheduling problem

Feasible Solutions
Let wsd be the nurse assigned to shift s on day d , where the domain of wsd is
the set of nurses {A,B,C ,D}.
Let tid be the shift assigned to nurse i on day d , and where shift 0 denotes a
day off.

1. alldiff(w1d ,w2d ,w3d), d = 1, . . . , 7
2. cardinality(W , (A,B,C ,D), (5, 5, 5, 5), (6, 6, 6, 6))

3. nvalues({ws1, . . . ,ws7}, 1, 2), s = 1, 2, 3
4. alldiff(tAd , tBd , tCd , tDd), d = 1, ..., 7
5. cardinality({ti1, . . . , ti7}, 0, 1, 2), i = A,B,C ,D
6. stretch-cycle((ti1, . . . , ti7), (2, 3), (2, 2), (6, 6),P), i = A,B,C ,D
7. wtid d = i ,∀i , d , twsd s = s,∀s, d
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Global ConstraintsCircuit problems

Given a directed weighted graph G = (N,A), find a circuit of min cost:

min
∑

i=1,...,n

cxi xi+1

alldiff([x1, . . . , xn]),

xi ∈ Di ,∀i = 1, . . . , n.

Note: cost depends on sequence.

An alternative formulation is

min
∑

i=1,...,n

ciyi

circuit([y1, . . . , yn]),

yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n.
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Global ConstraintsCircuit representation
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Global ConstraintsGlobal Constraint: circuit

“circuit” constraint

Let X = {x1, x2, . . . , xn} be a set of variables with respective domains
D(xi ) ⊆ {1, 2, ..., n} for i = 1, 2, ..., n. Then

circuit(x1, . . . , xn) ={(d1, ..., dn) | ∀i , di ∈ D(xi ), d1, ..., dn is cyclic }.
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Global ConstraintsCircuit problems - Linking viewpoints
A model with redundant constraints is as follows:

min z (1)

z ≥
∑

i=1,...,n

cxi xi+1 (2)

z ≥
∑

i=1,...,n

ciyi (3)

alldiff([x1, . . . , xn]), (4)
circuit([y1, . . . , yn]), (5)
x1 = yxn = 1, xi+1 = yxi , i = 1, . . . , n − 1 (6)
xi ∈ {1, . . . , n},∀i = 1, . . . , n, (7)
yi ∈ Di = {j | (i , j) ∈ A},∀i = 1, . . . , n. (8)

Line (6) implements the linking between the two formulations.
In Gecode it can be implemented with the element:� �
element(y, x[i], x[i+1])� �
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Global ConstraintsGlobal Constraint: regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F ) be a DFA and let X = {x1, x2, . . . , xn} be a set of
variables with D(xi ) ⊆ Σ for 1 ≤ i ≤ n. Then

regular(X ,M) =

{(d1, ..., dn) | ∀i , di ∈ D(xi ), [d1, d2, . . . , dn] ∈ L(M)}.
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Global ConstraintsGlobal Constraint: regular

Example

Given the problem

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},

regular([x1, x2, x3, x4],M).

One solution to this CSP is x1 = a, x2 = b, x3 = a, x4 = a.
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Global Constraints

In Gecode:� �
DFA::Transition t[] = {{0, 0(a), 1}, {1, 0(a), 1}, {1, 1(b), 2}, {2, 1(b), 2},

{2, 0(a), 3}, {3, 0(a), 3}, {3, 0, -1},
{0,2(c),4}, {4, 2(c), 4}, {4, 0, -1}};

int f[] = {3,4,-1}; // vector of f ina l states
DFA d(0, t, f);
BoolVarArray x(home, 4, 0(a), 3(d));
extensional(home, x, d);� �� �
REG r=(REG(0) + *REG(0) + REG(1) + *REG(1) + REG(0) + *REG(0)) | REG(2) + (*REG(2)));
DFA d(r);
extensional(home, x, d);� �
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Global ConstraintsScheduling Constraints

One job at a time on a machine (disjunctive machines):

“disjunctive” scheduling

Let (x1, . . . , xn) be a tuple of (integer/real)-valued variables indicating the
starting time of a job j . Let (p1, . . . , pn) be the processing times of each job.

disjunctive([x1, . . . , xn], [p1, . . . , pn]) =

{[s1, . . . , sn] | ∀i , j , i 6= j , (si + pi ≤ sj) ∨ (sj + pj ≤ si )}

In Gecode:� �
IntArgs p(4, 2,7,4,11);
unary(home, s, p);� �
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Global ConstraintsScheduling Constraints
In Resource Constrained Project Scheduling each resource can be used at
most up to its capacity:

cumulative constraints [Aggoun and Beldiceanu, 1993]

I rj release time of job j
I pj processing time
I dj deadline
I cj resource consumption
I C limit not to be exceeded at any point in time

Let x be an n-tuple of (integer/real) value variables denoting the starting
time of each job

cumulative([xj ], [pj ], [cj ],C ) :=

{([sj ], [pj ], [cj ],C ) | ∀t
∑

i | si≤t≤si+pi

ci ≤ C}

With cj = 1 forall j and C = 1  disjunctive
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Global ConstraintsScheduling Constraints

cumulatives generalizes cumulative by: [Beldiceanu and Carlsson, 2002]

1. allowing to have several cumulative resurces and that each task has to
be assigned to one of them

2. the resource consumption by any task is a variable that can take positive
or negative values

3. it is possible to enforce the cumulated consumption to be less than or
equal, or greater or equal to a given level.

4. the previous point on the cumulated resource consumption is enforced
only for those time-points that are overalpped by at least 1 task.
permitting multiple cumulative resources as well as negative resource
consumptions by the tasks.
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Global ConstraintsScheduling Constraints
Cumulatives

cumulatives constraints [Beldiceanu and Carlsson, 2002]

I variables (yj , xj , dj , cj , ej) for job j ∈ J
yj ∈ Z machine; dj ∈ Z+ duration; xj ∈ Z start time; cj ∈ Z
consumption; ej ∈ Z end time

I parameters (r , Lr ) for resource r ∈ R, Lr limit.
I constraint ≤ or ≥

cumulatives([yj ], [xj ], [dj ], [cj ], [ej ], [Lr ],Q) :={
([qj ], [sj ], [pj ], [uj ], [fj ], [Lqj ],Q) |

∀j ∈ J : sj + pj = fj and
∀j ∈ J,∀t ∈ [sj , ej − 1], r̂ = yj :∑

i | si≤t≤si+pi
yi=yj

ci ≤ Lr̂

}
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Global Constraints

examples of cases modelled by cumulatives

from [Beldiceanu and Carlsson, 2002]
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Global ConstraintsOthers

I Sorted constraints (sorted(x , y))

I Bin-packing constraints (binpacking(l , b, s))
lj is the load variable of bin j , bi the bin variable of item i , si size of
item i

I Geometrical packing constraints (nooverlap)
diffn((x1,∆x1), . . . , (xm,∆xm)) arranges a given set of
multidimensional boxes in n-space such that they do not overlap
(aka, nooverlap)

I Value precedence constraints (precede(x , s, t))

I Logical implication: conditional(D, C) between sets of constrains
D ⇒ C (ite)
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Global ConstraintsExamples

I Bin Packing
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Global ConstraintsMore (not in gecode)

I clique(x |G , k) requires that a given graph contain a clique of size k

I cycle(x |y) select edges such that they form exactly y directed cycles in
a graph.

I cutset(x |G , k) requires that for the set of selected vertices V ′, the set
V \ V ′ induces a subgraph of G that contains no cycles.
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Global ConstraintsGlobal Constraint Catalog
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Global ConstraintsCP Modeling Guidelines [Hooker, 2011]

1. A specially-structured subset of constraints should be replaced by a
single global constraint that captures the structure, when a suitable
one exists. This produces a more succinct model and can allow more
effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when
possible, to exploit more effectively the special structure of the
constraints.

3. The addition of redundant constraints (i..e, constraints that are implied
by the other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including
both (or parts of both) in the model may improve propagation.
Different variables are linked through the use of channeling constraints.
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