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Put a different number in each circle (1 to 8)  such 
that adjacent circles cannot take consecutive numbers 



Constraint Programming 
An Introduction 

by example 
 

Patrick Prosser 
 with the help of Toby Walsh, Chris Beck, 

Barbara Smith, Peter van Beek, Edward Tsang, ... 



A Puzzle 

•  Place numbers 1 through 8 on nodes 
– Each number appears exactly once 

? 

? 

? 

? 

? 

? 

? ? 

– No connected 
nodes have 
consecutive 
numbers   

You have  
8 minutes! 



Heuristic Search 
Which nodes are hardest to number? 

? 

? 

? 

? 

? 

? 

? ? 



Heuristic Search 

? 

? 

? 

? 

? 

? 

? ? 



Heuristic Search 

? 

? 

? 

? 

? 

? 

? ? 

Which are the least constraining values to use? 



Heuristic Search 

? 

1 

? 

? 

8 

? 

? ? 

Values 1 and 8 



Heuristic Search 

? 

1 

? 

? 

8 

? 

? ? 

Values 1 and 8 

Symmetry means we don’t need to consider:  8   1  



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

We can now eliminate many values for other nodes 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{1,2,3,4,5,6,7,8} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{2,3,4,5,6,7} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

By symmetry 

{3,4,5,6} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

{3,4,5,6} 

{1,2,3,4,5,6,7,8} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

{3,4,5,6} 

{2,3,4,5,6,7} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

{3,4,5,6} 

{3,4,5,6} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

By symmetry 

{3,4,5,6} 

{3,4,5,6} 

{3,4,5,6} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

{3,4,5,6,7} 

{3,4,5,6} 

{3,4,5,6} 

{3,4,5,6} 

{2,3,4,5,6} 



Inference/propagation 

? 

1 

? 

? 

8 

? 

? ? 

{3,4,5,6} 

{3,4,5,6,7} 

{3,4,5,6} 

{3,4,5,6} 

{3,4,5,6} 

{2,3,4,5,6} 

Value 2 and 7 are left in just one variable domain each 



Inference/propagation 

? 

1 

? 

? 

8 

? 

2 7 

{3,4,5,6} 

{3,4,5,6,7} 

{3,4,5,6} 

{3,4,5,6} 

{3,4,5,6} 

{2,3,4,5,6} 

And propagate … 



Inference/propagation 

? 

1 

? 

? 

8 

? 

2 7 

{3,4,5} 

{3,4,5,6,7} 

{3,4,5} 

{3,4,5,6} 

{3,4,5,6} 

{2,3,4,5,6} 

And propagate … 



Inference/propagation 

? 

1 

? 

? 

8 

? 

2 7 

{3,4,5} 

{3,4,5,6,7} 

{3,4,5} 

{4,5,6} 

{4,5,6} 

{2,3,4,5,6} 

And propagate … 



Inference/propagation 

? 

1 

? 

? 

8 

? 

2 7 

{3,4,5} 

{3,4,5} 

{4,5,6} 

{4,5,6} 

Guess a value, but be prepared to backtrack … 



Inference/propagation 

3 

1 

? 

? 

8 

? 

2 7 

{3,4,5} 

{3,4,5} 

{4,5,6} 

{4,5,6} 

Guess a value, but be prepared to backtrack … 



Inference/propagation 

3 

1 

? 

? 

8 

? 

2 7 

{3,4,5} 

{3,4,5} 

{4,5,6} 

{4,5,6} 

And propagate … 



Inference/propagation 

3 

1 

? 

? 

8 

? 

2 7 

{4,5} 

{5,6} 

{4,5,6} 

And propagate … 



Inference/propagation 

3 

1 

? 

? 

8 

? 

2 7 

{4,5} 

{5,6} 

{4,5,6} 

Guess another value … 



Inference/propagation 

3 

1 

? 

5 

8 

? 

2 7 

{4,5} {4,5,6} 

Guess another value … 



Inference/propagation 

3 

1 

? 

5 

8 

? 

2 7 

{4,5} {4,5,6} 

And propagate … 



Inference/propagation 

3 

1 

? 

5 

8 

? 

2 7 

{4} {4,6} 

And propagate … 



Inference/propagation 

3 

1 

4 

5 

8 

? 

2 7 

{4} {4,6} 

One node has only a single value left … 



Inference/propagation 

3 

1 

4 

5 

8 

6 

2 7 

{6} 



Solution 

3 

1 

4 

5 

8 

6 

2 7 



The Core of Constraint 
Computation 

•  Modelling 
– Deciding on variables/domains/constraints 

•  Heuristic Search 
•  Inference/Propagation 
•  Symmetry 
•  Backtracking 



Hardness 

•  The puzzle is actually a hard problem 
– NP-complete 



Constraint programming 

•  Model problem by specifying constraints on 
acceptable solutions 
–  define variables and domains 
–  post constraints on these variables 

•  Solve model 
–  choose algorithm 

•  incremental assignment / backtracking search 
•  complete assignments / stochastic search 

–  design heuristics 



Example CSP 
•  Variable, vi for each node 
•  Domain of {1, …, 8} 
•  Constraints 

–  All values used 
allDifferent(v1 v2 v3 v4 v5 v6 v7 v8) 
 
–  No consecutive numbers for 

adjoining nodes 
 
|v1 - v2 | > 1 
|v1 - v3 | > 1 
… 

? 

? 

? 

? 

? 

? 

? ? 
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Constraint Programming - in a nutshell

I Declarative description of problems with
I Variables which range over (finite) sets of values
I Constraints over subsets of variables which restrict possible value

combinations
I A solution is a value assignment which satisfies all constraints

I Constraint propagation/reasoning
I Removing inconsistent values for variables
I Detect failure if constraint can not be satisfied
I Interaction of constraints via shared variables
I Incomplete

I Search
I User controlled assignment of values to variables
I Each step triggers constraint propagation

I Different domains require/allow different methods

4



Constraint Programming

Constraint Programming: an alternative approach to imperative programming
and object oriented programming.

I Variables each with a finite set of possible values (domain)

I Constraint on a sequence of variables: a relationship on their domains

Constraint Satisfaction Problem: finite set of constraints

5



CP

Constraint Programming = model (representation) +
propagation (reasoning, inference) +
search (reasoning, inference)

6



Basic Process

Problem

Human

Model

Constraint Solver/Search

Solution

Insight Centre for Data Analytics Slide 9June 20th, 2016



More Realistic

Problem

Human

Model

Constraint Solver/Search

Hangs Solution Wrong Solution

Insight Centre for Data Analytics Slide 10June 20th, 2016



Dual Role of Model

• Allows Human to Express Problem
• Close to Problem Domain
• Constraints as Abstractions

• Allows Solver to Execute
• Variables as Communication Mechanism
• Constraints as Algorithms

Insight Centre for Data Analytics Slide 11June 20th, 2016



Modelling Frameworks

• MiniZinc (NICTA, Australia)

• NumberJack (Insight, Ireland)

• Essence (UK)

• Allow use of multiple back-end solvers

• Compile model into variants for each solver

• A priori solver independent model(CP, MIP, SAT)

Insight Centre for Data Analytics Slide 12June 20th, 2016



Framework Process

Problem

Human

Model

Compile/Reformulate

CP MIP SAT Other

Solution Solution Solution Solution

Insight Centre for Data Analytics Slide 13June 20th, 2016



Computational Models

Three main Computational Models to solve (combinatorial) constrained
optimization problems:

I Mathematical Programming (LP, ILP, QP, SDP, ...)

I Constraint Programming (CSP as a model, SAT as a very special case)

I Local Search (... and Meta-heuristics)

I Others? Dynamic programming, dedicated algorithms, satisfiability
modulo theory, answer set programming, etc.

7



Modeling

Modeling:

1. identify:
I parameters
I variables
I domains
I constraints
I objective function

that formulate the problem

2. express what in point 1) in a way that allows the solution by available
software

8



Variables

In MILP: real and integer (mostly binary) variables

In CP:

I finite domain integer (including Booleans),

I continuos with interval constraints

I structured domains: finite sets, multisets, graphs, ...

In LS: integer variables

9



Constraint Programming vs MILP

I In MILP we formulate problems as a set of linear inequalities

I In CP we describe substructures (so-called global constraints) and
combine them with various combinators.

I Substructures capture building blocks often (but not always)
comptuationally tractable by special-purpose algorithms

I CP models can:
I be solved by the constraint engine
I be linearized and solved by their MIP solvers;
I be translated in CNF and solved by SAT solvers;
I be handled by local search

I In MILP the solver is often seen as a black-box
In CP and LS solvers leave the user the task of programming the search.

I CP = model + propagation + search
constraint propagation by domain filtering  inference
search = backtracking or branch and bound or local search

10
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Aims

I Example of Finite Domain Constraint Problem

I Models and Programs

I Constraint Propagation and Search

I Some Basic Constraints:
linear arithmetic, alldifferent, disequality

I A Built-in search

I Visualizers for variables, constraints and search

12



Problem: Send + More = Money

Send + More = Money

You are asked to replace each letter by a different digit so that

S E N D +
M O R E =

M O N E Y

is correct. Because S and M are the leading digits, they cannot be equal to
the 0 digit.

13



Modelling

1. Parameters

2. Variables (ie, solution representation)

3. Domains (ie, allowed values for the variables)

4. Constraints

Later Objective Function

14



Model

I Each character is a variable, which ranges over the values 0 to 9.

I An alldifferent constraint between all variables, which states that two
different variables must have different values. This is a very common
constraint, which we will encounter in many other problems later on.

I Two disequality constraints (variable X must be different from value V )
stating that the variables at the beginning of a number can not take the
value 0.

I An arithmetic equality constraint linking all variables with the proper
coefficients and stating that the equation must hold.

15



Send More Money: CP model

SEND + MORE = MONEY

I Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

I Each letter takes a different digit  1 inequality constraint

alldifferent([X1,X2, . . . ,X8]).

(it substitutes 28 inequality constraints: Xi 6= Xj , i , j ∈ I , i 6= j)

I XM 6= 0, XS 6= 0

I Crypto constraint  1 equality constraint:
103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

16



I This is one model, not the model of the problem

I Many possible alternatives

I Choice often depends on the constraint system available
Constraints available
Reasoning attached to constraints

I Not always clear which is the best model

17



Send More Money: CP model
Gecode-python

from gecode import *

s = space()
letters = s.intvars(8,0,9)
S,E,N,D,M,O,R,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct(letters)
C = [1000, 100, 10, 1,

1000, 100, 10, 1,
-10000, -1000, -100, -10, -1]

X = [S,E,N,D,
M,O,R,E,
M,O,N,E,Y]

s.linear(C,X, IRT_EQ, 0)
s.branch(letters, INT_VAR_SIZE_MIN, INT_VAL_MIN)
for s2 in s.search():

print(s2.val(letters))

18



Send More Money: CP model
MiniZinc

19



Program Sendmory

:- module(sendmory).
:- export(sendmory/1).
:- lib(ic).
sendmory(L):-

L = [S,E,N,D,M,O,R,Y],
L :: 0..9,
alldifferent(L),
S #\= 0, M #\= 0,
1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=
10000*M + 1000*O + 100*N + 10*E + Y,
labeling(L).

Insight Centre for Data Analytics Slide 21June 20th, 2016



Question

But how did the program come up with this solution?

20



Constraint Setup

I Domain Definition

I Alldifferent Constraint

I Disequality Constraints

I Equality Constraint

21



The following slides are taken from H. Simonis: H. Simonis’ demo, slides
33-134 and his tutorial at ACP2016.

22

http://4c.ucc.ie/~hsimonis/ELearning/sendmore/slides.pdf
http://4c.ucc.ie/~hsimonis/ELearning/sendmore/slides.pdf


Domain Definition

L = [S,E,N,D,M,O,R,Y],
L :: 0..9,

[S,E ,N,D,M,O,R,Y ] ∈ {0..9}

Insight Centre for Data Analytics Slide 31June 20th, 2016



Domain Visualization

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 32June 20th, 2016



Domain Visualization

Rows =
Variables

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 32June 20th, 2016



Domain Visualization

Columns = Values
0 1 2 3 4 5 6 7 8 9

S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 32June 20th, 2016



Domain Visualization

Cells= State

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 32June 20th, 2016



Alldifferent Constraint

alldifferent(L),

• Built-in of ic library

• No initial propagation possible

• Suspends, waits until variables are changed

• When variable is fixed, remove value from domain of
other variables

• Forward checking

Insight Centre for Data Analytics Slide 33June 20th, 2016



Alldifferent Visualization

Uses the same representation as the domain visualizer

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 34June 20th, 2016



Disequality Constraints

S #\= 0, M#\= 0,

Remove value from domain

S ∈ {1..9},M ∈ {1..9}

Constraints solved, can be removed

Insight Centre for Data Analytics Slide 35June 20th, 2016



Domains after Disequality

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 36June 20th, 2016



Equality Constraint

• Normalization of linear terms
• Single occurence of variable
• Positive coefficients

• Propagation

Insight Centre for Data Analytics Slide 37June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+1000*M+ 100*O+ 10*R+ E

10000*M+ 1000*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+1000*M+ 100*O+ 10*R+ E

10000*M+ 1000*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+ 100*O+ 10*R+ E

9000*M+ 1000*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+ 100*O+ 10*R+ E

9000*M+ 1000*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+ 10*R+ E

9000*M+ 900*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ 10*N+ D
+ 10*R+ E

9000*M+ 900*O+ 100*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ D
+ 10*R+ E

9000*M+ 900*O+ 90*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 100*E+ D
+ 10*R+ E

9000*M+ 900*O+ 90*N+ 10*E+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Normalization

1000*S+ 91*E+ D
+ 10*R

9000*M+ 900*O+ 90*N+ Y

Insight Centre for Data Analytics Slide 38June 20th, 2016



Simplified Equation

1000∗S+91∗E +10∗R+D = 9000∗M +900∗O+90∗N +Y

Insight Centre for Data Analytics Slide 39June 20th, 2016



Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9 =

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9

Insight Centre for Data Analytics Slide 40June 20th, 2016



Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

1000..9918

=

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..89919

Insight Centre for Data Analytics Slide 40June 20th, 2016



Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

=

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

Insight Centre for Data Analytics Slide 40June 20th, 2016



Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

=

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

Deduction:
M = 1,S = 9,O ∈ {0..1}

Insight Centre for Data Analytics Slide 40June 20th, 2016



Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

=

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

Deduction:
M = 1,S = 9,O ∈ {0..1}

Why? Skip

Insight Centre for Data Analytics Slide 40June 20th, 2016



Consider lower bound for S

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

• Lower bound of equation is 9000

• Rest of lhs (left hand side) (91 ∗ E0..9 + 10 ∗ R0..9 + D0..9)
is atmost 918

• S must be greater or equal to 9000−918
1000 = 8.082

• otherwise lower bound of equation not reached by lhs

• S is integer, therefore S ≥ d9000−918
1000 e = 9

• S has upper bound of 9, so S = 9

Insight Centre for Data Analytics Slide 41June 20th, 2016



Consider upper bound of M

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

• Upper bound of equation is 9918

• Rest of rhs (right hand side) 900 ∗O0..9 + 90 ∗N0..9 + Y 0..9

is at least 0

• M must be smaller or equal to 9918−0
9000 = 1.102

• M must be integer, therefore M ≤ b9918−0
9000 c = 1

• M has lower bound of 1, so M = 1

Insight Centre for Data Analytics Slide 42June 20th, 2016



Consider upper bound of O

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9
︸ ︷︷ ︸

9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9
︸ ︷︷ ︸

9000..9918

• Upper bound of equation is 9918

• Rest of rhs (right hand side) 9000 ∗ 1 + 90 ∗ N0..9 + Y 0..9 is
at least 9000

• O must be smaller or equal to 9918−9000
900 = 1.02

• O must be integer, therefore O ≤ b9918−9000
900 c = 1

• O has lower bound of 0, so O ∈ {0..1}

Insight Centre for Data Analytics Slide 43June 20th, 2016



Propagation of equality: Result

0 1 2 3 4 5 6 7 8 9
S - - - - - - - - Y

E
N
D
M Y - - - - - - - -
O 6 6 6 6 6 6 6 6

R
Y

Insight Centre for Data Analytics Slide 44June 20th, 2016



Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S - - - - - - - - Y

E
N
D
M Y - - - - - - - -
O 6 6 6 6 6 6 6 6

R
Y

Insight Centre for Data Analytics Slide 45June 20th, 2016



Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S Y

E |
N |
D |
M Y

O
R |
Y |

Insight Centre for Data Analytics Slide 45June 20th, 2016



Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E |
N |
D |
M Y

O |
R |
Y |
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O Y

R
Y
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E |
N |
D |
M
O Y

R |
Y |
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

O = 0, [E ,R,D,N,Y ] ∈ {2..8}

Insight Centre for Data Analytics Slide 45June 20th, 2016



Waking the equality constraint

• Triggered by assignment of variables

• or update of lower or upper bound

Insight Centre for Data Analytics Slide 46June 20th, 2016



Removal of constants

1000 ∗ 9 + 91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 =

9000 ∗ 1 + 900 ∗ 0 + 90 ∗ N2..8 + Y 2..8

Insight Centre for Data Analytics Slide 47June 20th, 2016



Removal of constants

1000 ∗ 9 + 91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 =

9000 ∗ 1 + 900 ∗ 0 + 90 ∗ N2..8 + Y 2..8

Insight Centre for Data Analytics Slide 47June 20th, 2016



Removal of constants

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 = 90 ∗ N2..8 + Y 2..8

Insight Centre for Data Analytics Slide 47June 20th, 2016



Propagation of equality (Iteration 1)

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

204..816

= 90 ∗ N2..8 + Y 2..8
︸ ︷︷ ︸

182..728

Insight Centre for Data Analytics Slide 48June 20th, 2016



Propagation of equality (Iteration 1)

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 = 90 ∗ N2..8 + Y 2..8
︸ ︷︷ ︸

204..728

Insight Centre for Data Analytics Slide 48June 20th, 2016



Propagation of equality (Iteration 1)

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 = 90 ∗ N2..8 + Y 2..8
︸ ︷︷ ︸

204..728

N ≥ 3 = d204− 8
90

e,E ≤ 7 = b728− 22
91

c

Insight Centre for Data Analytics Slide 48June 20th, 2016



Propagation of equality (Iteration 2)

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
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Propagation of equality (Iteration 2)

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

204..725

= 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

272..728
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Propagation of equality (Iteration 2)

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

272..725
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Propagation of equality (Iteration 2)

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

272..725

E ≥ 3 = d272− 88
91

e

Insight Centre for Data Analytics Slide 49June 20th, 2016



Propagation of equality (Iteration 3)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
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Propagation of equality (Iteration 3)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

295..725

= 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

272..728
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Propagation of equality (Iteration 3)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

295..725
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Propagation of equality (Iteration 3)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8
︸ ︷︷ ︸

295..725

N ≥ 4 = d295− 8
90

e
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Propagation of equality (Iteration 4)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
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Propagation of equality (Iteration 4)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

295..725

= 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

362..728
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Propagation of equality (Iteration 4)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

362..725
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Propagation of equality (Iteration 4)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

362..725

E ≥ 4 = d362− 88
91

e
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Propagation of equality (Iteration 5)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
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Propagation of equality (Iteration 5)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

386..725

= 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

362..728
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Propagation of equality (Iteration 5)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

386..725
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Propagation of equality (Iteration 5)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8
︸ ︷︷ ︸

386..725

N ≥ 5 = d386− 8
90

e
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Propagation of equality (Iteration 6)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
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Propagation of equality (Iteration 6)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

386..725

= 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452..728
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Propagation of equality (Iteration 6)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452..725
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Propagation of equality (Iteration 6)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452..725

N ≥ 5 = d452− 8
90

e,E ≥ 4 = d452− 88
91

e

No further propagation at this point
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Domains after setup

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Outline

Problem

Program

Constraint Setup

Search
Step 1
Step 2
Further Steps
Solution

Points to Remember
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labeling built-in

labeling([S,E,N,D,M,O,R,Y])

• Try variable is order given

• Try values starting from smallest value in domain

• When failing, backtrack to last open choice

• Chronological Backtracking

• Depth First search
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Search Tree Step 1

Variable S already fixed

S

E
9
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Step 2, Alternative E = 4

Variable E ∈ {4..7}, first value tested is 4

S

E
4

9
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Assignment E = 4

0 1 2 3 4 5 6 7 8 9
S
E Y - - -
N
D
M
O
R
Y
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Propagation of E = 4, equality constraint

91 ∗ 4 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
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Propagation of E = 4, equality constraint

91 ∗ 4 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

386..452

= 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452..728
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Propagation of E = 4, equality constraint

91 ∗ 4 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452
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Propagation of E = 4, equality constraint

91 ∗ 4 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8
︸ ︷︷ ︸

452

N = 5,Y = 2,R = 8,D = 8
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Result of equality propagation

0 1 2 3 4 5 6 7 8 9
S
E
N Y - - -
D - - - - - - Y

M
O
R - - - - - - Y

Y Y - - - - - -
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N Y - - -
D - - - - - - Y

M
O
R - - - - - - Y

Y Y - - - - - -
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N Y - -
D - - - - - - Y

M
O
R - - - - - - Y

Y Y - - - - -

Alldifferent fails!
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Step 2, Alternative E = 5

Return to last open choice, E , and test next value

S

E
4

N
5

9
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Assignment E = 5

0 1 2 3 4 5 6 7 8 9
S
E - Y - -
N
D
M
O
R
Y

Insight Centre for Data Analytics Slide 64June 20th, 2016



Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E - Y - -
N
D
M
O
R
Y
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E Y

N |
D |
M
O
R |
Y |
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

N 6= 5,N ≥ 6
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Propagation of equality

91 ∗ 5 + 10 ∗ R2..8 + D2..8 = 90 ∗ N6..8 + Y 2..8
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Propagation of equality

91 ∗ 5 + 10 ∗ R2..8 + D2..8
︸ ︷︷ ︸

477..543

= 90 ∗ N6..8 + Y 2..8
︸ ︷︷ ︸

542..728
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Propagation of equality

91 ∗ 5 + 10 ∗ R2..8 + D2..8 = 90 ∗ N6..8 + Y 2..8
︸ ︷︷ ︸

542..543
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Propagation of equality

91 ∗ 5 + 10 ∗ R2..8 + D2..8 = 90 ∗ N6..8 + Y 2..8
︸ ︷︷ ︸

542..543

N = 6,Y ∈ {2,3},R = 8,D ∈ {7..8}
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Result of equality propagation

0 1 2 3 4 5 6 7 8 9
S
E
N Y - -
D 6 6 6 6

M
O
R - - - - - Y

Y 6 6 6 6
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N Y - -
D 6 6 6 6

M
O
R - - - - - Y

Y 6 6 6 6
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D |
M
O
R Y

Y
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D Y

M
O
R
Y
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Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

D = 7
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Propagation of equality

91 ∗ 5 + 10 ∗ 8 + 7 = 90 ∗ 6 + Y 2..3
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Propagation of equality

91 ∗ 5 + 10 ∗ 8 + 7︸ ︷︷ ︸
542

= 90 ∗ 6 + Y 2..3
︸ ︷︷ ︸

542..543
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Propagation of equality

91 ∗ 5 + 10 ∗ 8 + 7 = 90 ∗ 6 + Y 2..3
︸ ︷︷ ︸

542
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Propagation of equality

91 ∗ 5 + 10 ∗ 8 + 7 = 90 ∗ 6 + Y 2..3
︸ ︷︷ ︸

542

Y = 2
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Last propagation step

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y Y -
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Further Steps: Nothing more to do

S

E
4

N
5

9
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Further Steps: Nothing more to do

S

E
4

N

D
6

5

9

Insight Centre for Data Analytics Slide 71June 20th, 2016



Further Steps: Nothing more to do

S

E
4

N

D

M
7

6

5

9
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Further Steps: Nothing more to do

S

E
4

N

D

M

O
1

7

6

5

9
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Further Steps: Nothing more to do

S

E
4

N

D

M

O

R
0

1

7

6

5

9
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Further Steps: Nothing more to do

S

E
4

N

D

M

O

R

Y
8

0

1

7

6

5

9
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Further Steps: Nothing more to do

S

E
4

N

D

M

O

R

Y
2

8

0

1

7

6

5

9
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Complete Search Tree

S

E
4

N

D

M

O

R

Y
2

8

0

1

7

6

5 6 7

9
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Solution

9 5 6 7
+ 1 0 8 5
1 0 6 5 2
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Outline

1. An Initial Example

2. Constraint

3. Send More Money
Points to Remember
Modeling in MILP
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Points to Remember

I Constraint models are expressed by:
variables + constraints + parameters

I Problems can have many different models, which can behave quite
differently. Choosing the best model is an art.

I Constraints can take many different forms.

I Propagation deals with the interaction of variables and constraints:
It removes some values that are inconsistent with a constraint from the
domain of a variable.

I Constraints only communicate via shared variables.
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Points to Remember

I Propagation is data driven, and can be quite complex even for small
examples.

I Propagation usually is not sufficient, search may be required to find a
solution.

I The default search uses chronological depth-first backtracking,
systematically exploring the complete search space.

I The search choices and propagation are interleaved,
after every choice some more propagation may further reduce the
problem.

25



Applications

I Operation research (optimization problems)
I Graphical interactive systems (to express geometrical correctness)
I Molecular biology (DNA sequencing, 3D models of proteins)
I Finance
I Circuit verification
I Elaboration of natural languages (construction of efficient parsers)
I Scheduling of activities
I Configuration problem in form compilation
I Generation of coerent music programs [Anders and Miranda [2011]].
I Data bases
I ...
I http://hsimonis.wordpress.com/
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Applications
Distribution of technology used at Google for optimization applications
developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]
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Outline
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2. Constraint

3. Send More Money
Points to Remember
Modeling in MILP
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Send More Money: ILP model 1

I xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

I δij =

{
0 if xi < xj

1 if xj < xi

I Crypto constraint:
103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

I Each letter takes a different digit:

xi − xj − 10δij ≤ −1, for all i , j , i < j
xj − xi + 10δij ≤ 9, for all i , j , i < j
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Send More Money: ILP model 2

I xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
I yij ∈ {0, 1} for all i ∈ I , j ∈ J = {0, . . . , 9}
I Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

I Each letter takes a different digit:
∑

j∈J

yij = 1, ∀i ∈ I ,

∑

i∈I

yij ≤ 1, ∀j ∈ J,

xi =
∑

j∈J

jyij , ∀i ∈ I .
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Send More Money: ILP model

The quality of these formulations depends on both the tightness of the LP
relaxations and the number of constraints and variables (compactness)

I Which of the two models is tighter?
project out all extra variables in the LP so that the polytope for LP is in
the space of the x variables. By linear comb. of constraints:

Model 1

−1 ≤ xi − xj ≤ 10− 1

Model 2∑
j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑
j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

I Can you find the convex hull of this problem?
Williams and Yan [2001] prove that model 2 is facet defining

Suppose we want to maximize MONEY, how strong is the upper bound
obtained with this formulation? How to obtain a stronger upper bound?
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Send More Money: ILP model (revisited)

I xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }
I Crypto constraint:

103x1 +102x2 +10x3 +x4 +
103x5 +102x6 +10x7 +x2 =

104x5 +103x6 +102x3 +10x2 +x8

I Each letter takes a different digit:

∑

j∈J

xj ≥
|J| (|J| − 1)

2
, ∀J ⊂ I ,

∑

j∈J

xj ≤
|J| (2k − |J|) + 1

2
, ∀J ⊂ I .

But exponentially many!
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Send More Money: CP model (revisited)

I Xi ∈ {0, . . . , 9} for all i ∈ I = {S ,E ,N,D,M,O,R,Y }

I

103X1 +102X2 +10X3 +X4 +
103X5 +102X6 +10X7 +X2 =

104X5 +103X6 +102X3 +10X2 +X8

I

alldifferent([X1,X2, . . . ,X8]).

I Redundant constraints (5 equality constraints)
X4 + X2 = 10 r1 + X8,

X3 + X7 + r1 = 10 r2 + X2,

X2 + X6 + r2 = 10 r3 + X3,

X1 + X5 + r3 = 10 r4 + X6,

+r4 = X5.

Can we do better? Can we propagate something?
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Send Most Money: CP model
Gecode-python

Optimization version:

max
∑

i∈I ′
CiXi , I ′ = {M,O,N,E ,Y }

from gecode import *

s = space()
letters = s.intvars(8,0,9)
S,E,N,D,M,O,T,Y = letters
s.rel(M,IRT_NQ,0)
s.rel(S,IRT_NQ,0)
s.distinct(letters)
C = [1000, 100, 10, 1,

1000, 100, 10, 1,
-10000, -1000, -100, -10, -1]

X = [S,E,N,D,
M,O,S,T,
M,O,N,E,Y]

s.linear(C,X,IRT_EQ,0)
money = s.intvar(0,99999)
s.linear([10000,1000,100,10,1],[M,O,N,E,Y], IRT_EQ, money)
s.maximize(money)
s.branch(letters, INT_VAR_SIZE_MIN, INT_VAL_MIN)
for s2 in s.search():

print(s2.val(money), s2.val(letters))
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Strengths

I CP is excellent to explore highly constrained combinatorial spaces quickly

I Math programming is particulary good at deriving lower bounds

I LS is particualry good at derving upper bounds
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Differences

I MILP models
I impose modelling rules: linear inequalities and objectives
I emphasis on tightness and compactness of LP, strength of bounds

(remove dominated constraints)

I CP models
I a large variety of algorithms communicating with each other: global

constraints
I more expressiveness
I emphasis on exploiting substructres, include redundant constraints

41



Resume

I Constraint Satisfaction Problem

I Modelling in CP

I Examples, Send More Money, Sudoku
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