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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuResume

I CP modeling examples

I Graph labeling with consecutive numbers
I Send More Money

I Constraint programming:
representation (modeling language) + reasoning (propagation + search)

I model
I propagate, filtering, pruning
I search = backtracking + branching

I Gecode: model in Script class implementation
I Variables:

declare as members
initialize in constructor
update in copy constructor

I Posting constraints (in constructor)
I Create branching (in constructor)
I Provide copy constructor (recomputation) and copy function (cloning)
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I Introduction to CP and Gecode
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuConstraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that
can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C ⊆ D(x1)× · · · ×D(xk). A tuple (d1, . . . , dk) ∈ C is
called a solution to C .
Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the
value di to the variable xi for all 1 ≤ i ≤ k , and that this assignment satisfies
C . If C = ∅, we say that it is inconsistent.

Extensional: specifies the good (or bad) tuples (values)
Intensional: specifies the characteristic function
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuConstraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X with domain extension
D = D(x1)× · · · × D(xn), together with a finite set of constraints C, each on
a subset of X . A solution to a CSP is an assignment of a value d ∈ D(x) to
each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an
objective function f : D(x1)× · · · × D(xn)→ Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f (d).
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Constraint Satisfaction Problem
Modeling Examples
Example: Sudoku

Task:

I determine whether the CSP/COP is consistent (has a solution):

I find one solution

I find all solutions

I find one optimal solution

I find all optimal solutions
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuSolving CSPs

I Systematic search:

I choose a variable xi that is not yet assigned

I create a choice point, i.e. a set of mutually exclusive & exhaustive
choices, e.g. xi = v vs xi 6= v

I try the first & backtrack to try the other if this fails

I Constraint propagation:

I add xi = v or x 6= v to the set of constraints

I re-establish local consistency on each constraint
 remove values from the domains of future variables that can no longer
be used because of this choice

I fail if any future variable has no values left
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuRepresenting a Problem

I a CSP P =< X ,D, C > represents a problem P, if every solution of P
corresponds to a solution of P and every solution of P can be derived
from at least one solution of P

I More than one solution of P can represent the same solution of P or
viceversa, if symmetries are present

I The variables and values of P represent entities in P

I The constraints of P ensure the correspondence between solutions

I we must make sure that any solution to P yields exactly one solution to
P, and that any solution to P corresponds to a solution to P or is
symmetrically equivalent to such a solution, and that if P has no
solutions, this is because P itself has no solutions.

I The aim is to find a model P that can be solved as quickly as possible
(Note that shortest run-time might not mean least search!)
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuInteractions with Search Strategy

Whether a model is better than another can depend on the search algorithm
and search heuristics

I Let’s assume that the search algorithm is fixed
although different level of consistency can also play a role

I Let’s also assume that choice points are always xi = v vs xi 6= v

I Variable (and value) order still interact with the model a lot

I Is variable & value ordering part of modelling?

In practice it is.
but it depends on the modeling language used
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuGlobal Constraint: alldifferent

Global constraint:
set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) =

{(d1, ..., dn) | ∀i , di ∈ D(xi ), ∀i 6= j , di 6= dj}.

Constraint arity: number of variables involved in the constraint

Note: different notation and names used in the literature
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuGlobal Constraint Catalog

http://www.emn.fr/z-info/sdemasse/gccat/sec5.html
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Problem Statement

� Place 8 queens on a chess board such that the 
queens do not attack each other

� Straightforward generalizations
� place an arbitrary number: n Queens
� place as closely together as possible

�

�

�

�

�

�

�

�
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What Are the Variables?

� Representation of position on board
� First idea: two variables per queen

� one for row
� one for column
� 2�n variables

� Insight: on each column there will be a 
queen! 
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� Have a variable for each column
� value describes row for queen
� n variables

� Variables: x0��0��x7

where xi � +���0���,
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Other Possibilities

� For each field: number of queen
� )�����$(��"��&�"#'��"'�%�&'�"���&#0
� n2 variables

� For each field on board: is there a queen on 
the field?

� 848 variables
� variable has value 0: no queen
� variable has value 1: queen
� n2 variables
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Constraints: No Attack

� not in same column
� by choice of variables

� not in same row
� xi -�xj for i -�j

� not in same diagonal
� xi 1 i -�xj  - j for i -�j
� xi 1 j -�xj  - i for i -�j

� 3�n�( n 1 1) constraints
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� Sufficient by symmetry
i < j instead of i -�j

� Constraints
� xi -�xj for i < j
� xi 1 i -�xj  - j for i < j
� xi 1 j -�xj  - i for i < j

� 3/2�n�( n 1 1) constraints
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Even Fewer Constraints

� Not same row constraint 
xi -�xj for i < j

means: values for variables pairwise distinct
� Constraints

� distinct(x0��0��x7) 
� xi 1 i -�xj - j for i < j
� xi 1 j -�xj - i for i < j



())*")+"(, -.(()/"0)(123456'768&29:4$;7%12-3<12=<> I)
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distinct(x0,      x1,    ...,  x7) 
distinct(x0-0,  x1-1, ..., x7-7) 
distinct(x0+0, x1+1, ..., x7+7)
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Script: Variables

Queens(void)):)q(*this,8,0,7)){
�

}
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Script: Constraints

Queens(void)):)q(*this,8,0,7)){)
distinct(*this,)q);
for)(int i=0;)i<8;)i++)
for)(int j=i+1;)j<8;)j++)){
post(*this,)x[i]fi !=)x[j]fj);
post(*this,)x[i]fj)!=)x[j]fi);

}
�

}

rel
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Script: Branching

Queens(void)):)q(*this,8,0,7)){)
�
branch(*this,)q,

INT_VAR_NONE,
INT_VAL_MIN);

}
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Good Branching?

� Naïve is not a good strategy for branching

� Try the following (see assignment)
� first fail
� place queen as much in the middle of a row
� place queen in knight move fashion
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Summary 8 Queens

� Variables
� model should require few variables
� good: already impose constraints

� Constraints
� do not post same constraint twice
� '%*�'#���"��2���3��#"&'%��"'&�&(�&(!�"��!�"*�&!�  �

constraints
� more efficient
� often, more propagation (to be discussed)
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Grocery

� Kid goes to store and buys four items
� Cashier: that makes $7.11
� Kid: pays, about to leave store
� Cashier: hold on, I multiplied!

let me add!
wow, sum is also $7.11

� You: prices of the four items?
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Model

� Variables
� for each item A, B, C, D
� take values between +���0�����,
� compute with cents: allows integers

� Constraints
� A + B + C + D = 711
� A * B * C * D = 711 * 100 * 100 * 100

The unique solution (upon the symmetry breaking of slide 87) is: 
A=120, B=125, C=150, D=316. T

e
x
t

T
e
x
t

T
e
x
t
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Script

class)Grocery):)public)Space){
protected:

IntVarArray abcd;

const)int s)=)711;
const)int p)=)s)*)100)*)100)*)100;

public:
��
������
�����������

�
}
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Script: Variables

Grocery(void)):)abcd(*this,4,0,711)){
�

}
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Script: Sum

�
//)Sum)of)all)variables)is)s
linear(this,)abcd,)IRT_EQ,)s);

IntVar a(abcd[0]),)b(abcd[1]),)
c(abcd[2]),)d(abcd[3]);
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Script: Product

IntVar t1(*this,1,p);
IntVar t2(*this,1,p);
IntVar t3(*this,p,p);

mult(*this,)a,)b,)t1);
mult(*this,)c,)d,)t2);
mult(*this,)t1,)t2,)t3);
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Branching

� Bad idea: try values one by one
� Good idea: split variables

� for variable x
� with m = (min(x) + max(x)) / 2
� branch x < m or x � m

� Typically good for problems involving 
arithmetic constraints

� exact reason needs to be explained later
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Script: Branching

branch(*this,)abcd,
INT_VAR_NONE,
INT_VAL_SPLIT_MIN);
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Search Tree

� 2829 nodes for first solution
� �%�''*����0
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Better Heuristic?

� Try branches in different order
split with larger interval first

� try: INT_VAL_SPLIT_MAX
� Search tree: 2999 nodes

� worse in this case
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Symmetries

� Interested in values for A, B, C, D
� Model admits equivalent solutions

� interchange values for A, B, C, D

� We can add order A, B, C, D:
A .���.���.��

� ��  ���2&*!!�'%*��%����"���#"&'%��"'3
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Script: Symmetry Breaking

�
rel(this,)a,)IRT_LQ,)b);
rel(this,)b,)IRT_LQ,)c);
rel(this,)c,)IRT_LQ,)d);
�
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Effect of Symmetry Breaking

� Search tree size 308 nodes

� Let us try INT_VAL_SPLIT_MAX)again
� tree size 79 nodes!
� interaction between branching and symmetry breaking
� other possibility: A /���/���/��
� we need to investigate more (later)!
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Any More Symmetries?

� Observe: 711 has prime factor 79
� that is: 711 = 79 4 9

� Assume: A can be divided by 79
� add: A = 79 4 X 

for some finite domain var X 
� remove ��.��
� the remaining B, C, D of course can still be 

ordered
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Any More Symmetries?

� In Gecode 
IntVar x(*this,1,p);
IntVar sn(*this,79,79);
mult(*this,)x,)sn,)a);

� Search tree 44 nodes!
� now we are talking!
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Summary: Grocery

� Branching: consider also
� how to partition domain
� in which order to try alternatives

� Symmetry breaking
� can reduce search space
� might interact with branching
� typical: order variables in solutions

� Try to really understand problem!
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Domination Constraints

� In symmetry breaking, prune solutions 
without interest

� Similarly for best solution search
� typically, interested in just one best solution
� impose constraints to prune some solutions with same 

"cost"
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Another Observation

� Multiplication decomposed as
A�B = T1 C�D = T2 T1�T2 = P

� What if 
A�B = T1 T1�C = T2 T2�D = P

� propagation changes: 355 nodes
� propagation is not compositional!
� another point to investigate



Magic Squares 2 9 4
7 5 3
6 1 8

Unique solution for n=3, upon the 
symmetry breaking of slide 99.
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Magic Squares

� Find an n4n matrix such that
� every field is integer between 1 and n2

� fields pairwise distinct
� sums of rows, columns, two main diagonals are equal

� Very hard problem for large n
� Here: we just consider the case n=3
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Model

� For each matrix field have variable xij
� xij � {1, .., 9}

� One additional variable s for sum
� s � {1, .., 949}

� All fields pairwise distinct
� distinct(xij)

� For each row i have constraint
� xi0 + xi1 + xi2 = s
� columns and diagonals similar
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Script

� Straightforward
� Branching strategy

� first-fail
� split again: arithmetic constraints
� try to come up with something that is really good!

� Generalize it to arbitrary n
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Symmetries

� Clearly, we can require for first row that first 
and last variable must be in order

� Also, for opposing corners
� In all (other combinations possible)

� x00 < x02

� x02 < x20

� x00 < x22
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Important Observation

� We know the sum of all fields
����	���0�����������	�
�

� ���2�"#)3�'���&(!�#��#"��%#)
s

� We know that we have three rows
34s = 45
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Implied Constraints

� The constraint model already implies
34s = 45

� implies solutions are the same

� However, adding a propagator for the 
constraint drastically improves propagation

� Often also: redundant or implied constraint
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Effect

� Simple model 92 nodes
� Symmetry breaking 29 nodes
� Implied constraint 6 nodes
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Summary: Magic Squares

� Add implied constraints
� are implied by model
� increase constraint propagation
� reduce search space
� require problem understanding

� Also as usual
� break symmetries
� choose appropriate branching
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����
�

� Common modeling principles
� what are the variables
� finding the constraints
� finding the propagators
� implied (redundant) constraints
� finding the branching
� symmetry breaking
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Modeling Strategy

� Understand problem
� identify variables
� identify constraints
� identify optimality criterion

� Attempt initial model simple?
� try on examples to assess correctness

� Improve model much harder!
� scale up to real problem size
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuExample: Sudoku

Model and solve the following Sudoku in MIP and CP

4 3 8 2 5
6

1 9 4
9 4 7

6 8
1 2 3

8 2 5
5

3 4 9 7 1
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuSudoku: ILP model

Let yijt be equal to 1 if digit t appears in cell (i , j). Let N be the set
{1, . . . , 9}, and let Jkl be the set of cells (i , j) in the 3× 3 square in position
k, l . ∑

j∈N

yijt = 1, ∀i , t ∈ N,

∑
j∈N

yjit = 1, ∀i , t ∈ N,

∑
i,j∈Jkl

yijt = 1, ∀k, l = {1, 2, 3}, t ∈ N,

∑
t∈N

yijt = 1, ∀i , j ∈ N,

yi,j,aij = 1, ∀i , j ∈ given instance.
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuSudoku: CP model

Model:

Xij ∈ N, ∀i , j ∈ N,

Xij = aij , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Search: backtracking
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuSudoku: CP model (revisited)

Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Redundant Constraint:

∑
j∈N

Xij = 45, ∀i ∈ N,

∑
j∈N

Xji = 45, ∀i ∈ N,

∑
ij∈Jkl

Xij = 45, k, l ∈ {1, 2, 3}.
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuViewpoints

Viewpoint (X ,D):
I same solutions

I can be combined

I rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed;
the problem to be described using as few constraints as possible, as long
as those constraints have efficient, low-complexity propagation
algorithms

Releated concept: auxiliary variables and linking or channelling
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Constraint Satisfaction Problem
Modeling Examples
Example: SudokuModeling Constraints

Better understood if:

I aware of the range of constraints supported by the constraint solver and
the level of consistency enforced on each and

I have some idea of the complexity of the corresponding propagation
algorithms.

I combine them

I use global constraints

I extensional constraints

I implied constraints
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