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2. Modeling Examples
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Resume

» CP modeling examples

» Graph labeling with consecutive numbers
» Send More Money

» Constraint programming:
representation (modeling language) + reasoning (propagation + search)
> model
> propagate, filtering, pruning
» search = backtracking + branching

» Gecode: model in Script class implementation
> Variables:
declare as members
initialize in constructor
update in copy constructor
> Posting constraints (in constructor)
» Create branching (in constructor)
> Provide copy constructor (recomputation) and copy function (cloning)
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1. Constraint Satisfaction Problem



Constraint Satisfaction Problem

Constraint Programming

The domain of a variable x, denoted D(x), is a finite set of elements that
can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C C D(xy) x -+ x D(xx). A tuple (dy,...,dx) € Cis
called a solution to C.

Equivalently, we say that a solution (di, ..., dx) € C is an assignment of the
value d; to the variable x; for all 1 </ < k, and that this assignment satisfies
C. If C =), we say that it is inconsistent.

Extensional: specifies the good (or bad) tuples (values)
Intensional: specifies the characteristic function



Constraint Satisfaction Problem
Modeling Examples

Constraint Programming Example Sudoks

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables A with domain extension

D = D(x1) x -+ x D(x,), together with a finite set of constraints C, each on
a subset of A'. A solution to a CSP is an assignment of a value d € D(x) to
each x € X, such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, ..., x,, together with an
objective function 7 : D(x;) X --- x D(x,) — Q that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of 7(d).




Constraint Satisfaction Problem

Task:

> determine whether the CSP/COP is consistent (has a solution):

find one solution

v

find all solutions

v

v

find one optimal solution

v

find all optimal solutions



Constraint Satisfaction Problem

Solving CSPs

» Systematic search:

» choose a variable x; that is not yet assigned

> create a choice point, i.e. a set of mutually exclusive & exhaustive
choices, e.g. xi = v vs x; # v

> try the first & backtrack to try the other if this fails
» Constraint propagation:
» add x; = v or x # v to the set of constraints
> re-establish local consistency on each constraint
~ remove values from the domains of future variables that can no longer

be used because of this choice

» fail if any future variable has no values left



Constraint Satisfaction Problem

Representing a Problem

v

a CSP P =< X,D,C > represents a problem P, if every solution of PP
corresponds to a solution of P and every solution of P can be derived
from at least one solution of P

More than one solution of P can represent the same solution of P or
viceversa, if symmetries are present

The variables and values of P represent entities in P
The constraints of P ensure the correspondence between solutions

we must make sure that any solution to P yields exactly one solution to
P, and that any solution to P corresponds to a solution to P or is
symmetrically equivalent to such a solution, and that if P has no
solutions, this is because P itself has no solutions.

The aim is to find a model P that can be solved as quickly as possible
(Note that shortest run-time might not mean least search!)
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Constraint Satisfaction Problem

Interactions with Search Strategy

Whether a model is better than another can depend on the search algorithm
and search heuristics

> Let's assume that the search algorithm is fixed
although different level of consistency can also play a role

> Let's also assume that choice points are always x; = v vs x; # v
> Variable (and value) order still interact with the model a lot

» |s variable & value ordering part of modelling?

In practice it is.
but it depends on the modeling language used

11



Constraint Satisfaction Problem
Modeling Examples

Global Constraint: alldifferent Example: Sudoku

Global constraint:

set of more elementary constraints that exhibit a special structure when
considered together.

alldifferent constraint

Let x1,xo, ..., x, be variables. Then:

alldifferent(xy,...,x,) =
{(dl;"'7dn) ‘ Vi: di S D(Xf)7 Vi #Ja di # dj}

Constraint arity: number of variables involved in the constraint

Note: different notation and names used in the literature
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Constraint Satisfaction Problem
Modeling Examples

Global Constraint Catalog Ecample: Sudobo

http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Global Constraint Catalog

Corresponding author: Nicolas Beldi nicolas.beldi fr
) . X . (Google Search ) O Web ® Catalog
Online version: Sophie D« sophie fr O allformats @ html O pdf
Global Constraint Catalog

html / 2009-12-16

Search by:

NAME Keyword Meta-keyword Argument pattern Graph description
Bibliography Index

(ex: Bound Soft constraint,...) can be searched by Meta-keywords (ex: Application area, Fiitering, Constraint
type,...)

About the catalogue

The catalogue presents a list of 348 global constraints issued from the literature in constraint programming and
from popular constraint systems. The semantic of each constraint is given together with a description in terms of
graph properties and/or automata.
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Constraint Satisfaction Problem
Modeling Examples

Outline Example: Sudoku

2. Modeling Examples
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Constraint Satisfaction Problem
Modeling Examples

Outline Example: Sudoku

2. Modeling Examples
n-Queens, Grocery, Magic Squares
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‘ 8-Queens




Problem Statement

Place 8 queens on a chess board such that the
queens do not attack each other
Straightforward generalizations

place an arbitrary number: n Queens
place as closely together as possible

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 63



What Are the Variables?

Representation of position on board

First idea: two variables per queen

one for row

one for column

2-nvariables
Insight: on each column there will be a
queen!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH
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Fewer Variables...

Have a variable for each column
value describes row for queen

nvariables
Variables: Xy -ees X7
where x; € {0, ..., 7}

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 65



Other Possibilities

For each field: number of queen
which queen is not interesting, so...
n? variables

For each field on board: is there a queen on
the field?

8x8 variables

variable has value 0: no queen
variable has value 1: queen

n? variables

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 66



Constraints: No Attack

not in same column
by choice of variables

not in same row
X #x; fori#j

not in same diagonal
Xi—I#X-] fori #j
Xi—j# X -0 fori #j

3-n-( n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Fewer Constraints...

Sufficient by symmetry
I <j instead of | #j

Constraints
X; # X fori <j
Xi—1# X -] fori<j
Xi—j# X -0 fori <j

3/2-n-( n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Even Fewer Constraints

Not same row constraint
X; % X; fori <j
means: values for variables pairwise distinct

Constraints
distinct(xy, ..., X7)
Xi—I#X;-] fori <j
Xi—j# X -0 fori <j

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Pushing it Further...

Yes, also diagonal constraints can be
captured by distinct constraints
see-assignment

distinct(x0, x1, .., X7)
distinct(x0-0, x1-1, ..., x7-7)
distinct(x0+0, x1+1, ..., x7+7)

2009-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



| Script: Variables

Queens(void) : q(*this,8,0,7) {

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



| Script: Constraints

Queens(void) : q(*this,8,0,7) {
distinct(*this, q);
for (int i=0; i<8; i++)
for (int j=i+1; j<8; j++) {
(| Post(*this, x[i]-i 1= x[3]-3);
pest(*this, x[1i]-j != x[j]-1);
}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Script: Branching
Queens(void) : q(*this,8,0,7) {
branch(*this, q,

INT_VAR_NONE,
INT_VAL_MIN);

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Good Branching?

Naive is not a good strategy for branching

Try the following (see assignment)
first fail
place queen as much in the middle of a row
place queen in knight move fashion

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Summary 8 Queens

Variables
model should require few variables
good: already impose constraints

Constraints
do not post same constraint twice

try to find “big” constraints subsuming many small
constraints

more efficient

often, more propagation (to be discussed)

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Grocery




Grocery

Kid goes to store and buys four items
Cashier: that makes $7.11

Kid: pays, about to leave store
Cashier: hold on, | multiplied!
let me add!

wow, sum is also $7.11
You: prices of the four items?

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



‘ Model

= Variables
= for each item A B,C D
= take values between {0, ..., 711}
= compute with cents: allows integers

= Constraints

= A+B+C+D=711 I]
= A*B*C*D=711*100 * 100 * 100

The unique solution (upon the symmetry breaking of slide 87) is:
A=120, B=125, C=150, D=316. I

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 78




Script

class Grocery : public Space {
protected:
IntVarArray abcd;

const int s = 711;

const int p = s * 100 * 100 * 100;
public:

Grocery(void) .. { .. }

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 79



Script: Variables

Grocery(void) : abcd(*this,4,0,711) {

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Script: Sum

// Sum of all variables is s
linear(this, abcd, IRT _EQ, s);

IntVar a(abcd[0]), b(abcd[1]),
c(abcd[2]), d(abcd[3]);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 81



Script: Product

IntVar tl1(*this,1,p);
IntVar t2(*this,1,p);
IntVar t3(*this,p,p);

mult(*this, a, b, t1);

mult(*this, c, d, t2);
mult(*this, t1, t2, t3);

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Branching

Bad idea: try values one by one

Good idea: split variables

for variable x

with m = (min(x) + max(x)) / 2

branch xX<m or xzm
Typically good for problems involving
arithmetic constraints

exact reason needs to be explained later

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Script: Branching

branch(*this, abcd,
INT_VAR_NONE,
INT_VAL_SPLIT MIN);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 84



Search Tree

2829 nodes for first solution
Pretty bad...

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Better Heuristic?

Try branches in different order

split with larger interval first
o try: INT_VAL_SPLIT_MAX

Search tree: 2999 nodes

worse in this case

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 86



Symmetries

Interested in values for A, B, C, D

Model admits equivalent solutions
interchange values for A, B, C, D

We can add order A, B, C, D:
A<B=<C=<D
Called “symmetry breaking constraint

”

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Script: Symmetry Breaking

rel(this, a, IRT_LQ, b);
rel(this, b, IRT_LQ, c);
rel(this, c, IRT_LQ, d);

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 88



Eftfect of Symmetry Breaking

Search tree size 308 nodes

Let us try INT_VAL_SPLIT_MAX again
tree size 79 nodes!
interaction between branching and symmetry breaking
other possibility: AZzB=C =D
we need to investigate more (later)!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 89



Any More Symmetries?

Observe: 711 has prime factor 79
thatis: 711 =79 x 9

Assume: A can be divided by 79

add: A=79x X

for some finite domain var X
remove A<B
the remaining B, C, D of course can still be
ordered

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 90



Any More Symmetries?

In Gecode
IntVar x(*this,1,p);
IntVar sn(*this,79,79);
mult(*this, x, sn, a);
Search tree 44 nodes!
now we are talking!

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Summary: Grocery

Branching: consider also
how to partition domain
in which order to try alternatives

Symmetry breaking
can reduce search space
might interact with branching
typical: order variables in solutions

Try to really understand problem!

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Domination Constraints

In symmetry breaking, prune solutions
without interest

Similarly for best solution search
typically, interested in just one best solution

impose constraints to prune some solutions with same
n "
cost

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Another Observation

Multiplication decomposed as
A‘B = T1 C‘D - T2 T1‘T2 = P

What if
AB=T, T,C=T, T,D=P
propagation changes: 355 nodes

propagation is not compositional!
another point to investigate

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Magic Squares 2/9 4

Unique solution for n=3, upon the
symmetry breaking of slide 99.




Magic Squares

Find an nxn matrix such that
every field is integer between 1 and n?
fields pairwise distinct
sums of rows, columns, two main diagonals are equal

Very hard problem for large n
Here: we just consider the case n=3

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 96



Model

For each matrix field have variable X;j
x;e {1, .., 9

One additional variable s for sum
se{l,..,9x9}

All fields pairwise distinct
distinct(x;)

For each row i have constraint
Xot Xy * Xp=$
columns and diagonals similar

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Script

Straightforward
Branching strategy

first-fail
split again: arithmetic constraints
try to come up with something that is really good!

Generalize it to arbitrary n

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 98



Symmetries

Clearly, we can require for first row that first
and last variable must be in order
Also, for opposing corners

In all (other combinations possible)
Xo0 < Xo2
Xo2 < X20
Xo0 < X22

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH



Important Observation

We know the sum of all fields
1+2+ ... +9=9(9+1)/2=45

We “know” the sum of one row
S

We know that we have three rows
3xs =45

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 100



Implied Constraints

The constraint model already implies
3xs =45

implies solutions are the same

However, adding a propagator for the
constraint drastically improves propagation

Often also: redundant or implied constraint

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 101



Effect

Simple model 92 nodes
Symmetry breaking 29 nodes
Implied constraint 6 nodes

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH

102



Summary: Magic Squares

Add implied constraints
are implied by model
increase constraint propagation
reduce search space
require problem understanding

Also as usual
break symmetries
choose appropriate branching

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 103



Outlook...

Common modeling principles

2010-03-25

what are the variables

finding the constraints

finding the propagators

implied (redundant) constraints
finding the branching
symmetry breaking

1D2204-1.02, Christian Schulte, ICT, KTH 104



Modeling Strategy

Understand problem
identify variables
identify constraints
identify optimality criterion

Attempt initial model simple?
try on examples to assess correctness
Improve model much harder!

scale up to real problem size

2010-03-25 1D2204-L02, Christian Schulte, ICT, KTH 105



Constraint Satisfaction Problem
Modeling Examples

O utl i n e Example: Sudoku

3. Example: Sudoku
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Example: Sudoku

Model and solve the following Sudoku in MIP and CP

413 8 215
6
1 9|4
9 4 7
6 8
3
8|2
5
314 9 711

Example: Sudoku

18



Constraint Satisfaction Problem
Modeling Examples

Sudoku: ILP model Examples Sudoles

Let y;i be equal to 1 if digit t appears in cell (7,/). Let N be the set
{1,...,9}, and let Jy be the set of cells (i,/) in the 3 x 3 square in position
k, 1.

Z)’ijtzl’ Vit e N,
JjeEN

> vie=1, vhrel,
JEN

> et wi=agen
ijeEJy

3y =1, Vi,jeN,
teN

Yijaz = 1, Vi,j € given instance.

19



Constraint Satisfaction Problem

Modeling Examples
Sudoku: CP model Example: Sudek
Model:
Xij € N, Vi,jeN,
Xij = ajj, Vi,j € given instance,
alldifferent([ X/, . .., Xoi]), Vie N,
alldifferent([ X1, . . ., Xio]), VieN,
alldifferent({Xj; | ij € Ju}), Vk, I €{1,2,3}.

Search: backtracking

20



Constraint Satisfaction Problem
Modeling Examples

Sudoku: CP model (revisited) Example: Sudeks
X; € N, Vijen,
Xij = at, Vi,j € given instance,
alldifferent([ X4/, ..., Xoi]), Vie N,
alldifferent([ X1, . . ., Xio]), VieN,

alldifferent({Xj; | ij € Ju}),

Redundant Constraint:

> Xj =45,

JEN
> x5
JjEN
Z Xj = 45,
IISS/Y

Yk, I € {1,2,3}.

VieN,
Vie N,

k,le{1,2,3}.

21



Viewpoints Erample: Sudoku

Viewpoint (X, D):

> same solutions
» can be combined

» rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed,;
the problem to be described using as few constraints as possible, as long
as those constraints have efficient, low-complexity propagation
algorithms

Releated concept: auxiliary variables and linking or channelling

22



Modeling Constraints Evampl: Sudoku

Better understood if:

> aware of the range of constraints supported by the constraint solver and
the level of consistency enforced on each and

» have some idea of the complexity of the corresponding propagation
algorithms.

» combine them
> use global constraints
» extensional constraints

» implied constraints

23
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