DM841
 DISCRETE OPTIMIZATION

Modeling for CP

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Constraint Satisfaction Problem

2. Modeling Examples
n-Queens, Grocery, Magic Squares
3. Example: Sudoku

Resume

- CP modeling examples
- Graph labeling with consecutive numbers
- Send More Money
- Constraint programming: representation (modeling language) + reasoning (propagation + search)
- model
- propagate, filtering, pruning
- search $=$ backtracking + branching
- Gecode: model in Script class implementation
- Variables:
declare as members
initialize in constructor
update in copy constructor
- Posting constraints (in constructor)
- Create branching (in constructor)
- Provide copy constructor (recomputation) and copy function (cloning)

List of Contents

- Introduction to CP and Gecode
- Modeling with Finite Domain Integer Variables
- Overview on global constraints
- Notions of local consistency
- Constraint propagation algorithms
- Filtering algorithms for global constraints
- Search
- Set variables
- Symmetries

1. Constraint Satisfaction Problem

2. Modeling Examples
n-Queens, Grocery, Magic Squares
3. Example: Sudoku

Constraint Programming

The domain of a variable x, denoted $D(x)$, is a finite set of elements that can be assigned to x.

A constraint C on X is a subset of the Cartesian product of the domains of the variables in X , i.e., $C \subseteq D\left(x_{1}\right) \times \cdots \times D\left(x_{k}\right)$. A tuple $\left(d_{1}, \ldots, d_{k}\right) \in C$ is called a solution to C.
Equivalently, we say that a solution $\left(d_{1}, \ldots, d_{k}\right) \in C$ is an assignment of the value d_{i} to the variable x_{i} for all $1 \leq i \leq k$, and that this assignment satisfies C. If $C=\emptyset$, we say that it is inconsistent.

Extensional: specifies the good (or bad) tuples (values) Intensional: specifies the characteristic function

Constraint Programming

Constraint Satisfaction Problem (CSP)
A CSP is a finite set of variables \mathcal{X} with domain extension
$\mathcal{D}=D\left(x_{1}\right) \times \cdots \times D\left(x_{n}\right)$, together with a finite set of constraints \mathcal{C}, each on a subset of \mathcal{X}. A solution to a CSP is an assignment of a value $d \in D(x)$ to each $x \in \mathcal{X}$, such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)
A COP is a CSP \mathcal{P} defined on the variables x_{1}, \ldots, x_{n}, together with an objective function $f: D\left(x_{1}\right) \times \cdots \times D\left(x_{n}\right) \rightarrow Q$ that assigns a value to each assignment of values to the variables. An optimal solution to a minimization (maximization) COP is a solution d to \mathcal{P} that minimizes (maximizes) the value of $f(d)$.

Task:

- determine whether the CSP/COP is consistent (has a solution):
- find one solution
- find all solutions
- find one optimal solution
- find all optimal solutions

Solving CSPs

- Systematic search:
- choose a variable x_{i} that is not yet assigned
- create a choice point, i.e. a set of mutually exclusive \& exhaustive choices, e.g. $x_{i}=v$ vs $x_{i} \neq v$
- try the first \& backtrack to try the other if this fails
- Constraint propagation:
- add $x_{i}=v$ or $x \neq v$ to the set of constraints
- re-establish local consistency on each constraint \rightsquigarrow remove values from the domains of future variables that can no longer be used because of this choice
- fail if any future variable has no values left

Representing a Problem

- a CSP $\mathcal{P}=<X, \mathcal{D}, \mathcal{C}>$ represents a problem P , if every solution of \mathcal{P} corresponds to a solution of P and every solution of P can be derived from at least one solution of \mathcal{P}
- More than one solution of \mathcal{P} can represent the same solution of P or viceversa, if symmetries are present
- The variables and values of \mathcal{P} represent entities in P
- The constraints of \mathcal{P} ensure the correspondence between solutions
- we must make sure that any solution to \mathcal{P} yields exactly one solution to P , and that any solution to P corresponds to a solution to \mathcal{P} or is symmetrically equivalent to such a solution, and that if \mathcal{P} has no solutions, this is because P itself has no solutions.
- The aim is to find a model \mathcal{P} that can be solved as quickly as possible (Note that shortest run-time might not mean least search!)

Interactions with Search Strategy

Whether a model is better than another can depend on the search algorithm and search heuristics

- Let's assume that the search algorithm is fixed although different level of consistency can also play a role
- Let's also assume that choice points are always $x_{i}=v$ vs $x_{i} \neq v$
- Variable (and value) order still interact with the model a lot
- Is variable \& value ordering part of modelling?

In practice it is.
but it depends on the modeling language used

Global Constraint: alldifferent

Global constraint:
set of more elementary constraints that exhibit a special structure when considered together.
alldifferent constraint
Let $x_{1}, x_{2}, \ldots, x_{n}$ be variables. Then:

$$
\begin{aligned}
& \text { alldifferent }\left(x_{1}, \ldots, x_{n}\right)= \\
& \qquad\left\{\left(d_{1}, \ldots, d_{n}\right) \mid \forall i, d_{i} \in D\left(x_{i}\right), \quad \forall i \neq j, d_{i} \neq d_{j}\right\} .
\end{aligned}
$$

Constraint arity: number of variables involved in the constraint
Note: different notation and names used in the literature

Global Constraint Catalog

http://www.emn.fr/z-info/sdemasse/gccat/sec5.html

Global Constraint Catalog

Corresponding author: Nicolas Beldiceanu nicolas.beldiceanu@emn.fr
Online version: Sophie Demassey sophie.demassey@emn.fr

Global Constraint Catalog
html / 2009-12-16

Search by:

NAME Keyword	Meta-keyword	Argument pattern	Graph description
	Bibliography	Index	

Keywords (ex:Assignment, Bound consistency, Soft constraint,...) can be searched by Meta-keywords (ex: Application area, Fittering, Constraint type,...)

About the catalogue

The catalogue presents a list of 348 global constraints issued from the literature in constraint programming and from popular constraint systems. The semantic of each constraint is given together with a description in terms of graph properties and/or automata.

1. Constraint Satisfaction Problem

2. Modeling Examples
n-Queens, Grocery, Magic Squares
3. Example: Sudoku

Outline

1. Constraint Satisfaction Problem

2. Modeling Examples
n-Queens, Grocery, Magic Squares
3. Example: Sudoku

8-Queens

Problem Statement

- Place 8 queens on a chess board such that the queens do not attack each other
- Straightforward generalizations
- place an arbitrary number: n Queens
- place as closely together as possible

What Are the Variables?

- Representation of position on board
- First idea: two variables per queen
- one for row
- one for column
- 2.n variables
- Insight: on each column there will be a queen!

Fewer Variables...

- Have a variable for each column
- value describes row for queen
- n variables
- Variables:
where $\quad x_{i} \in\{0, \ldots, 7\}$

Other Possibilities

- For each field: number of queen
- which queen is not interesting, so...
- n^{2} variables
- For each field on board: is there a queen on the field?
- 8×8 variables
- variable has value 0 : no queen
- variable has value 1: queen
- n^{2} variables

Constraints: No Attack

- not in same column
- by choice of variables
- not in same row
- $x_{i} \neq x_{j} \quad$ for $i \neq j$
- not in same diagonal
- $x_{i}-i \neq x_{j}-j$ for $i \neq j$
- $x_{i}-j \neq x_{j}-i$ for $i \neq j$
- $3 \cdot n \cdot(n-1)$ constraints

Fewer Constraints...

- Sufficient by symmetry
$i<j$ instead of $i \neq j$
- Constraints
- $x_{i} \neq x_{j}$ for $i<j$
- $x_{i}-i \neq x_{j}-j$
for $i<j$
- $x_{i}-j \neq x_{j}-i$
for $i<j$
- $3 / 2 \cdot n \cdot(n-1)$ constraints

Even Fewer Constraints

- Not same row constraint

$$
x_{i} \neq x_{j} \quad \text { for } i<j
$$

means: values for variables pairwise distinct

- Constraints
- distinct $\left(x_{0}, \ldots, x_{7}\right)$
- $x_{i}-i \neq x_{j}-j \quad$ for $i<j$
- $x_{i}-j \neq x_{j}-i \quad$ for $i<j$

Pushing it Further...

- Yes, also diagonal constraints can be captured by distinct constraints
- see assignment

```
distinct(x0, x1, ..., x7)
distinct(x0-0, x1-1, .., x7-7)
distinct(x0+0, x1+1,\ldots,x7+7)
```


Script: Variables

Queens(void) : q(*this,8,0,7) \{ \}

Script: Constraints

```
Queens(void) : q(*this,8,0,7) {
    distinct(*this, q);
    for (int i=0; i<8; i++)
        for (int j=i+1; j<8; j++) {
    rel post(*this, x[i]-i != x[j]-j);
    post(*this, x[i]-j != x[j]-i);
        }
}
```


Script: Branching

Queens(void) : q(*this,8,0,7) \{

 branch(*this, q,INT_VAR_NONE,
INT_VAL_MIN);
\}

Good Branching?

- Naïve is not a good strategy for branching
- Try the following (see assignment)
- first fail
- place queen as much in the middle of a row
- place queen in knight move fashion

Summary 8 Queens

- Variables
- model should require few variables
- good: already impose constraints
- Constraints
- do not post same constraint twice
- try to find "big" constraints subsuming many small constraints
- more efficient
- often, more propagation (to be discussed)

Grocery

Grocery

- Kid goes to store and buys four items
- Cashier: that makes $\$ 7.11$
- Kid:
- Cashier: hold on, I multiplied! let me add!
wow, sum is also $\$ 7.11$
- You: prices of the four items?

Model

- Variables
- for each item A, B, C, D
- take values between $\{0, \ldots, 711\}$
- compute with cents: allows integers
- Constraints
- $A+B+C+D=711$
- A * B * C * $D=711$ * 100 * 100 * 100

The unique solution (upon the symmetry breaking of slide 87) is: $A=120, B=125, C=150, D=316$.

Script

```
class Grocery : public Space {
protected:
    IntVarArray abcd;
    const int s = 711;
    const int p = s * 100 * 100 * 100;
public:
    Grocery(void) ... { ... }
}
```


Script: Variables

Grocery(void) : abcd(*this,4,0,711) \{ $\}$

Script: Sum

// Sum of all variables is s
linear(this, abcd, IRT_EQ, s);
IntVar $a(a b c d[0]), b(a b c d[1])$, $c(a b c d[2]), d(a b c d[3])$;

Script: Product

IntVar t1(*this,1,p);
IntVar t2(*this,1,p);
IntVar t3(*this,p,p);
mult(*this, a, b, t1);
mult(*this, c, d, t2);
mult(*this, t1, t2, t3);

Branching

- Bad idea: try values one by one
- Good idea: split variables
- for variable x
- with $m=(\min (x)+\max (x)) / 2$
- branch $\quad x<m \quad$ or $\quad x \geq m$
- Typically good for problems involving arithmetic constraints
- exact reason needs to be explained later

Script: Branching

branch(*this, abcd,
INT_VAR_NONE,
INT_VAL_SPLIT_MIN);

Search Tree

- 2829 nodes for first solution
- Pretty bad...

Better Heuristic?

- Try branches in different order split with larger interval first
- try: INT_VAL_SPLIT_MAX
- Search tree: 2999 nodes
- worse in this case

Symmetries

- Interested in values for A, B, C, D
- Model admits equivalent solutions
- interchange values for A, B, C, D
- We can add order A, B, C, D :

$$
A \leq B \leq C \leq D
$$

- Called "symmetry breaking constraint"

Script: Symmetry Breaking

rel(this, a, IRT_LQ, b); rel(this, b, IRT_LQ, c); rel(this, c, IRT_LQ, d);

Effect of Symmetry Breaking

- Search tree size 308 nodes
- Let us try INT_VAL_SPLIT_MAX again
- tree size 79 nodes!
- interaction between branching and symmetry breaking
- other possibility: $A \geq B \geq C \geq D$
- we need to investigate more (later)!

Any More Symmetries?

- Observe: 711 has prime factor 79
- that is: $711=79 \times 9$
- Assume: A can be divided by 79
- add:

$$
A=79 \times X
$$

$$
\text { for some finite domain var } X
$$

- remove $A \leq B$
- the remaining B, C, D of course can still be ordered

Any More Symmetries?

- In Gecode

IntVar x (*this,1,p);
IntVar sn(*this,79,79);
mult(*this, $x, ~ s n, ~ a) ;$

- Search tree 44 nodes!
- now we are talking!

Summary: Grocery

- Branching: consider also
- how to partition domain
- in which order to try alternatives
- Symmetry breaking
- can reduce search space
- might interact with branching
- typical: order variables in solutions
- Try to really understand problem!

Domination Constraints

- In symmetry breaking, prune solutions without interest
- Similarly for best solution search
- typically, interested in just one best solution
- impose constraints to prune some solutions with same "cost"

Another Observation

- Multiplication decomposed as

$$
A \cdot B=T_{1} \quad C \cdot D=T_{2} \quad T_{1} \cdot T_{2}=P
$$

- What if

$$
A \cdot B=\mathrm{T}_{1} \quad \mathrm{~T}_{1} \cdot \mathrm{C}=\mathrm{T}_{2} \quad \mathrm{~T}_{2} \cdot \mathrm{D}=\mathrm{P}
$$

- propagation changes: 355 nodes
- propagation is not compositional!
- another point to investigate

Magic Squares

2	9	4
7	5	3
6	1	8

Unique solution for $\mathrm{n}=3$, upon the symmetry breaking of slide 99.

Magic Squares

- Find an $n \times n$ matrix such that
- every field is integer between 1 and n^{2}
- fields pairwise distinct
- sums of rows, columns, two main diagonals are equal
- Very hard problem for large n
- Here: we just consider the case $n=3$

Model

- For each matrix field have variable $x_{i j}$
- $x_{i j} \in\{1, \ldots, 9\}$
- One additional variable s for sum
- $s \in\{1, . ., 9 \times 9\}$
- All fields pairwise distinct
- distinct $\left(x_{i j}\right)$
- For each row i have constraint
- $x_{i 0}+x_{i 1}+x_{i 2}=s$
- columns and diagonals similar

Script

- Straightforward
- Branching strategy
- first-fail
- split again: arithmetic constraints
- try to come up with something that is really good!
- Generalize it to arbitrary n

Symmetries

- Clearly, we can require for first row that first and last variable must be in order
- Also, for opposing corners
- In all (other combinations possible)
- $x_{00}<x_{02}$
- $x_{02}<x_{20}$
- $x_{00}<x_{22}$

Important Observation

- We know the sum of all fields

$$
1+2+\ldots+9=9(9+1) / 2=45
$$

- We "know" the sum of one row

S

- We know that we have three rows

$$
3 \times s=45
$$

Implied Constraints

- The constraint model already implies

$$
3 \times s=45
$$

- implies solutions are the same
- However, adding a propagator for the constraint drastically improves propagation
- Often also: redundant or implied constraint

Effect

- Simple model
- Symmetry breaking
- Implied constraint

92 nodes
29 nodes
6 nodes

Summary: Magic Squares

- Add implied constraints
- are implied by model
- increase constraint propagation
- reduce search space
- require problem understanding
- Also as usual
- break symmetries
- choose appropriate branching

Outlook...

- Common modeling principles
- what are the variables
- finding the constraints
- finding the propagators
- implied (redundant) constraints
- finding the branching
- symmetry breaking

Modeling Strategy

- Understand problem
- identify variables
- identify constraints
- identify optimality criterion
- Attempt initial model simple?
- try on examples to assess correctness
- Improve model
much harder!
- scale up to real problem size

Outline

1. Constraint Satisfaction Problem
2. Modeling Examples
n-Queens, Grocery, Magic Squares
3. Example: Sudoku

Example: Sudoku

Model and solve the following Sudoku in MIP and CP

	4	3		8		2	5	
6								
					1		9	4
9					4		7	
			6		8			
	1		2					3
8	2		5					
								5
	3	4		9		7	1	

Sudoku: ILP model

Let $y_{i j t}$ be equal to 1 if digit t appears in cell (i, j). Let N be the set $\{1, \ldots, 9\}$, and let $J_{k l}$ be the set of cells (i, j) in the 3×3 square in position k, l.

$$
\begin{array}{lr}
\sum_{j \in N} y_{i j t}=1, & \forall i, t \in N, \\
\sum_{j \in N} y_{j i t}=1, & \forall i, t \in N, \\
\sum_{i, j \in J_{k l}} y_{i j t}=1, & \forall k, I=\{1,2,3\}, t \in N, \\
\sum_{t \in N} y_{i j t}=1, & \forall i, j \in N, \\
y_{i, j, a_{i j}}=1, & \forall i, j \in \text { given instance. }
\end{array}
$$

Sudoku: CP model

Model:

$$
\begin{aligned}
& X_{i j} \in N, \\
& X_{i j}=a_{i j}, \\
& \text { alldifferent }\left(\left[X_{1 i}, \ldots, X_{9 i}\right]\right), \\
& \text { alldifferent }\left(\left[X_{i 1}, \ldots, X_{i 9}\right]\right), \\
& \text { alldifferent }\left(\left\{X_{i j} \mid i j \in J_{k l}\right\}\right),
\end{aligned}
$$

$$
\begin{array}{r}
\forall i, j \in N, \\
\forall i, j \in \text { given instance, } \\
\forall i \in N, \\
\forall i \in N, \\
\forall k, l \in\{1,2,3\} .
\end{array}
$$

Search: backtracking

Sudoku: CP model (revisited)

$$
\begin{aligned}
& X_{i j} \in N, \\
& X_{i j}=a_{t}, \\
& \text { alldifferent }\left(\left[X_{1 i}, \ldots, X_{9 i}\right]\right), \\
& \text { alldifferent }\left(\left[X_{i 1}, \ldots, X_{i g}\right]\right), \\
& \text { alldifferent }\left(\left\{X_{i j} \mid i j \in J_{k l}\right\}\right),
\end{aligned}
$$

Redundant Constraint:

$$
\begin{array}{lr}
\sum_{j \in N} x_{i j}=45, & \forall i \in N, \\
\sum_{j \in N} x_{j i}=45, & \forall i \in N, \\
\sum_{i j \in J_{k l}} X_{i j}=45, & k, l \in\{1,2,3\} .
\end{array}
$$

Viewpoint $(\mathcal{X}, \mathcal{D})$:

- same solutions
- can be combined
- rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed; the problem to be described using as few constraints as possible, as long as those constraints have efficient, low-complexity propagation algorithms
Releated concept: auxiliary variables and linking or channelling

Modeling Constraints

Better understood if:

- aware of the range of constraints supported by the constraint solver and the level of consistency enforced on each and
- have some idea of the complexity of the corresponding propagation algorithms.
- combine them
- use global constraints
- extensional constraints
- implied constraints

