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Local Consistency
Arc Consistency AlgorithmsResume

I Definitions
(CSP, restrictions, projections, istantiation, local consistency)

I Tigthtenings

I Global consistent (any instantiation local consistent can be extended to
a solution) needs exponential time
 local consistency defined by condition Φ of the problem

I Tightenings by constraint propagation: reduction rules + rules iterations
I reduction rules ⇔ Φ consistency
I rules iteration: reach fixed point, that is, closure of all tightenings that

are Φ consistent
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1. Local Consistency

2. Arc Consistency Algorithms
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We call a CSP node consistent if for every variable x every unary constraint
on x coincides with the domain of x .

Example

I 〈C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ N〉
and C does not contain other unary constraints
node consistent

I 〈C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ Z〉
and C does not contain other unary constraints
not node consistent

A CSP is node consistent iff it is closed under the applications of the Node
Consistency rule (propagator):

〈C ; x ∈ D〉
〈C ; x ∈ C ∩ D〉

(the rule is parameterised by a variable x and a unary constraint C )
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Arc consistency: every value in a domain is consistent with every binary
constraint.

I C = c(x , y) with D = {D(x),D(y)} is arc consistent iff
I ∀a ∈ D(x) there exists b ∈ D(y) such that (a, b) ∈ C
I ∀b ∈ D(y) there exists a ∈ D(x) such that (a, b) ∈ C

I P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

6=

=x ∈ {a, b} y ∈ {a, b}

A consistent but not arc consistent CSP:

=

x ∈ {a, b} y ∈ {a}
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A CSP is arc consistent iff it is closed under the applications of the Arc
Consistency rules (propagators):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D ′(x), y ∈ D(y)〉

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D(x), y ∈ D ′(y)〉

where D ′(y) := {b ∈ D(y) | ∃a ∈ D(x), (a, b) ∈ C}
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Theorem

An arbitrary (non-binary) CSP can be polynomially converted into an
equivalent binary CSP.
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Arc Consistency AlgorithmsGeneralized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) P, C ∈ C, xi ∈ X (C )

(Value) v ∈ D(xi ) is consistent with C in D iff ∃ a valid tuple τ for C :
vi = τ [xi ]. τ is called support for (xi , vi )

(Variable) D is GAC on C for xi iff all values in D(xi ) are consistent with
C in D (i.e., D(xi ) ⊆ π{xi}(C ∩ π{X (C)}(D)))

(Problem) P is GAC iff D is GAC for all x in X on all C ∈ C

P is arc inconsistent iff the only domain tighter than D which
is GAC for all variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)
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Example

〈x = 1, y ∈ {0, 1}, z ∈ {0, 1}; C = {x ∧ y = z}〉
is hyperarc consistent

〈x ∈ {0, 1}, y ∈ {0, 1}, z = 1; C = {x ∧ y = z}〉
is not hyper-arc consistent

Example: arc consistency 6= 2-consistency, AC < 2C on non-normalized
binary CSP, and incomparable on arbitrary CSP (later)
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A CSP is arc consistent iff it is closed under the applications of the Arc
Consistency rules (propagators):

〈C ; x1 ∈ D(x), . . . , xk ∈ D(xk)〉
〈C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)〉

where D ′(xi ) := {a ∈ D(xi )|∃τ ∈ C , a = τ [xi ]}
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Arc Consistency rule 1 (propagator):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D ′(x), y ∈ D(y)〉

where D ′(x) := {a ∈ D(x)|∃b ∈ D(y), (a, b) ∈ C}

This can also be written as (on represents the join):

D(x)← D(x) ∩ π{x}(on(C ,D(y)))

Arc Consistency rule 2 (propagator):

〈C ; x ∈ D(x), y ∈ D(y)〉
〈C ; x ∈ D(x), y ∈ D ′(y)〉

where D ′(y) := {b ∈ D(y)|∃a ∈ D(x), (a, b) ∈ C}

This can also be written as:

D(y)← D(y) ∩ π{y}(on(C ,D(x)))
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(Generalized) Arc Consistency rule (propagator):

〈C ; x1 ∈ D(x), . . . , xk ∈ D(xk)〉
〈C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)〉

where D ′(xi ) := {a ∈ D(xi )|∃τ ∈ C , a = τ [xi ]}

This can also be written as:

D(xi )← D(xi ) ∩ π{xi}(C ∩ πX (C)(D))
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Revision: making a constraint arc consistent by propagating the domain from
a variable to anohter
Corresponds to:

D(x)← D(x) ∩ π{x}(on(C ,D(y)))

for a given variable x and constraint C
Assume normalized network:

Complexity:O(d2) or O(rd r )
d values, r arity
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Binary case

I Complexity (Mackworth and Freuder, 1986): O(end3)
e number of arcs, n variables
(ed2 each loop, a single succesful removal causes all loop again  nd
number of loops)

I best-case = O(ed)
I Arc-consistency is at least O(ed2) in the worst case (see later)
I  too many calls to Revise
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General case – Arc oriented (coarse-grained)

O(er3d r+1) time
O(er) space
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Example

P = 〈X = (x , y , z), D = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Binary normalized problems – value oriented (fine grained)

O(ed2) time (optimal)
O(ed2) space

O(erd r ) time for GAC
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Binary normalized problems

S [xj , vj ] list of values (xi , vi ) currently having (xj , vj) as their first support

O(ed2) time
O(ed) space
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Binary case

O(ed2) time
O(ed) space
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Example

P = 〈X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y 6= z}}〉
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Example

〈x < y , y < z , z < x ; x , y , z ∈ {1..100000}〉

is inconsistent.

Proof: Apply revise to (x , x < y)

〈x < y , y < z , z < x ; x ∈ {1..99999}, y , z ∈ {1..100000}〉,

ecc. we end in a fail.

I Disadvantage: large number of steps.
Run time depends on the size of the domains!

I Note: we could prove fail by transitivity of <.
 Path consitency involves two constraints together
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