DM841 DISCRETE OPTIMIZATION

Part I Constraint Propagation Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Resume

Definitions (CSP, restrictions, projections, istantiation, local consistency)

- Tigthtenings
- ► Global consistent (any instantiation local consistent can be extended to a solution) needs exponential time ~> local consistency defined by condition Φ of the problem
- ► Tightenings by constraint propagation: reduction rules + rules iterations
 - reduction rules $\Leftrightarrow \Phi$ consistency
 - ► rules iteration: reach fixed point, that is, closure of all tightenings that are Φ consistent

Outline

1. Local Consistency

2. Arc Consistency Algorithms

Node Consistency

We call a CSP node consistent if for every variable x every unary constraint on x coincides with the domain of x.

Example

- ⟨C, x₁ ≥ 0,..., x_n ≥ 0; x₁ ∈ N,..., x_n ∈ N⟩ and C does not contain other unary constraints node consistent
- ▶ $\langle C, x_1 \ge 0, \dots, x_n \ge 0; x_1 \in \mathbb{N}, \dots, x_n \in \mathbb{Z} \rangle$ and C does not contain other unary constraints not node consistent

A CSP is node consistent iff it is closed under the applications of the Node Consistency rule (propagator):

 $\frac{\langle C; x \in D \rangle}{\langle C; x \in C \cap D \rangle}$

(the rule is parameterised by a variable x and a unary constraint C)

Arc Consistency

Arc consistency: every value in a domain is consistent with every binary constraint.

- C = c(x, y) with $\mathcal{D} = \{D(x), D(y)\}$ is arc consistent iff
 - ▶ $\forall a \in D(x)$ there exists $b \in D(y)$ such that $(a, b) \in C$
 - ▶ $\forall b \in D(y)$ there exists $a \in D(x)$ such that $(a, b) \in C$
- $\blacktriangleright \ \mathcal{P}$ is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency. An arc consistent but inconsistent CSP:

A consistent but not arc consistent CSP:

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules (propagators):

 $\frac{\langle C; x \in D(x), y \in D(y) \rangle}{\langle C; x \in D'(x), y \in D(y) \rangle}$ where $D'(x) := \{a \in D(x) \mid \exists b \in D(y), (a, b) \in C\}$ $\frac{\langle C; x \in D(x), y \in D(y) \rangle}{\langle C; x \in D(x), y \in D'(y) \rangle}$ where $D'(y) := \{b \in D(y) \mid \exists a \in D(x), (a, b) \in C\}$

Theorem

An arbitrary (non-binary) CSP can be polynomially converted into an equivalent binary CSP.

Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) \mathcal{P} , $C \in \mathcal{C}$, $x_i \in X(C)$

(Value) $v \in D(x_i)$ is consistent with C in \mathcal{D} iff \exists a valid tuple τ for C: $v_i = \tau[x_i]$. τ is called support for (x_i, v_i)

(Variable) \mathcal{D} is GAC on C for x_i iff all values in $D(x_i)$ are consistent with C in \mathcal{D} (i.e., $D(x_i) \subseteq \pi_{\{x_i\}}(C \cap \pi_{\{X(C)\}}(\mathcal{D})))$

(Problem) \mathcal{P} is GAC iff \mathcal{D} is GAC for all x in X on all $C \in \mathcal{C}$

 ${\cal P}$ is arc inconsistent iff the only domain tighter than ${\cal D}$ which is GAC for all variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)

Example

 $\langle x = 1, y \in \{0, 1\}, z \in \{0, 1\}; C = \{x \land y = z\} \rangle$ is hyperarc consistent

 $\langle x \in \{0,1\}, y \in \{0,1\}, z = 1; \mathcal{C} = \{x \land y = z\} \rangle$

is not hyper-arc consistent

Example: arc consistency \neq 2-consistency, AC < 2C on non-normalized binary CSP, and incomparable on arbitrary CSP (later)

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules (propagators):

 $\frac{\langle C; x_1 \in D(x), \dots, x_k \in D(x_k) \rangle}{\langle C; x_1 \in D(x_1), \dots, x_{i-1} \in D(x_{i-1}), x_i \in D'(x_i), x_{i+1} \in D(x_{i+1}), \dots, x_k \in D(x_k) \rangle}$ where $D'(x_i) := \{a \in D(x_i) | \exists \tau \in C, a = \tau[x_i]\}$

Outline

1. Local Consistency

2. Arc Consistency Algorithms

Arc Consistency

Arc Consistency Álgorithms

Local Consistency

Arc Consistency rule 1 (propagator):

 $\frac{\langle C; x \in D(x), y \in D(y) \rangle}{\langle C; x \in D'(x), y \in D(y) \rangle}$ where $D'(x) := \{a \in D(x) | \exists b \in D(y), (a, b) \in C\}$

This can also be written as (\bowtie represents the join):

 $D(x) \leftarrow D(x) \cap \pi_{\{x\}}(\bowtie(C, D(y)))$

Arc Consistency rule 2 (propagator):

 $\frac{\langle C; x \in D(x), y \in D(y) \rangle}{\langle C; x \in D(x), y \in D'(y) \rangle}$

where $D'(y) := \{b \in D(y) | \exists a \in D(x), (a, b) \in C\}$

This can also be written as:

 $D(y) \leftarrow D(y) \cap \pi_{\{y\}}(\bowtie(C, D(x)))$

(Generalized) Arc Consistency rule (propagator):

 $\frac{\langle C; x_1 \in D(x), \dots, x_k \in D(x_k) \rangle}{\langle C; x_1 \in D(x_1), \dots, x_{i-1} \in D(x_{i-1}), x_i \in D'(x_i), x_{i+1} \in D(x_{i+1}), \dots, x_k \in D(x_k) \rangle}$ where $D'(x_i) := \{a \in D(x_i) | \exists \tau \in C, a = \tau[x_i]\}$

This can also be written as:

 $D(x_i) \leftarrow D(x_i) \cap \pi_{\{x_i\}}(C \cap \pi_{X(C)}(\mathcal{D}))$

AC1 – Reduction rule

Revision: making a constraint arc consistent by propagating the domain from a variable to anohter Corresponds to:

$D(x) \leftarrow D(x) \cap \pi_{\{x\}}(\bowtie(C, D(y)))$

for a given variable x and constraint CAssume normalized network:

 $\operatorname{Revise}((x_i), x_j)$

input: a subnetwork defined by two variables $X = \{x_i, x_j\}$, a distinguished variable x_i , domains: D_i and D_j , and constraint R_{ij}

output: D_i , such that, x_i arc-consistent relative to x_j

- 1. for each $a_i \in D_i$
- 2. **if** there is no $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$
- 3. then delete a_i from D_i
- 4. endif
- 5. endfor

```
Complexity: O(d^2) or O(rd^r)
d values, r arity
```

AC1 – Rules Iteration

 $AC-1(\mathcal{R})$

input: a network of constraints $\mathcal{R} = (X, D, C)$

output: \mathcal{R}' which is the loosest arc-consistent network equivalent to \mathcal{R} 1. **repeat**

- 2. **for** every pair $\{x_i, x_j\}$ that participates in a constraint 3. Revise $((x_i), x_i)$ (or $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_i)$)
- 4. Revise $((x_j), x_i)$ (or $D_j \leftarrow D_j \cap \pi_j(R_{ij} \bowtie D_i))$
- 5. endfor
- 6. **until** no domain is changed
 - Complexity (Mackworth and Freuder, 1986): O(end³)
 e number of arcs, n variables
 (ed² each loop, a single succesful removal causes all loop again → nd number of loops)
 - best-case = O(ed)
 - Arc-consistency is at least $O(ed^2)$ in the worst case (see later)
 - ▶ ~→ too many calls to Revise

AC3 (Macworth, 1977) General case – Arc oriented (coarse-grained)

```
function Revise3(in x<sub>i</sub>: variable; c: constraint): Boolean ;
    begin
         CHANGE ← false:
 1
         foreach v_i \in D(x_i) do
 2
              if \exists \tau \in c \cap \pi_{X(c)}(D) with \tau[x_i] = v_i then
 3
                   remove v_i from D(x_i);
 4
                   CHANGE \leftarrow true;
 5
         return CHANGE :
 6
    end
function AC3/GAC3(in X: set): Boolean;
                                                                             O(er^3d^{r+1}) time O(er) space
    begin
         /* initalisation */:
         Q \leftarrow \{(x_i, c) \mid c \in C, x_i \in X(c)\};\
 7
         /* propagation */;
         while Q \neq \emptyset do
 8
              select and remove (x_i, c) from Q;
 9
              if Revise(x_i, c) then
10
                   if D(x_i) = \emptyset then return false;
11
                   else Q \leftarrow Q \cup \{(x_i, c') \mid c' \in C \land c' \neq c \land x_i, x_j \in X(c') \land j \neq i\};
12
13
         return true ;
    end
```

Local Consistency Arc Consistency Algorithms

AC3 Example

$$\mathcal{P} = \langle X = (x, y, z), \ \mathcal{D} = \{ D(x) = D(y) = \{1, 2, 3, 4\}, \ D(z) = \{3\} \}, \\ \mathcal{C} = \{ C_1 \equiv x \le y, C_2 \equiv y \ne z \} \} \rangle$$

Initialisation: Revise (X,c1), (Y,c1), (Y,c2), (Z,c2)

Propagation: Revise (X,c1)

AC4

Binary normalized problems - value oriented (fine grained)

function AC4(in X: set): Boolean ; begin /* initialization */: $Q \leftarrow \emptyset; S[x_i, v_i] = 0, \forall v_i \in D(x_i), \forall x_i \in X;$ 1 for each $x_i \in X, c_{ij} \in C, v_i \in D(x_i)$ do 2 initialize counter $[x_i, v_i, x_j]$ to $|\{v_i \in D(x_j) \mid (v_i, v_j) \in c_{ij}\}|;$ 3 if counter $[x_i, v_i, x_i] = 0$ then remove v_i from $D(x_i)$ and add (x_i, v_i) to $\mathbf{4}$ Q: add (x_i, v_i) to each $S[x_i, v_i]$ s.t. $(v_i, v_i) \in c_{ii}$; 5 if $D(x_i) = \emptyset$ then return false ; 6 $O(ed^2)$ time (optimal) $O(ed^2)$ space $O(erd^r)$ time for GAC /* propagation */: 7 while $Q \neq \emptyset$ do select and remove (x_i, v_i) from Q; 8 foreach $(x_i, v_i) \in S[x_i, v_i]$ do 9 if $v_i \in D(x_i)$ then 10 $\operatorname{counter}[x_i, v_i, x_j] = \operatorname{counter}[x_i, v_i, x_j] - 1;$ 11 if $counter[x_i, v_i, x_i] = 0$ then 12 remove v_i from $D(x_i)$; add (x_i, v_i) to Q; 13 if $D(x_i) = \emptyset$ then return false; 14 15return true :

end

Local Consistency Arc Consistency Algorithms

$$\mathcal{P} = \langle X = (x, y, z), \ \mathcal{DE} = \{ D(x) = D(y) = \{1, 2, 3, 4\}, \ D(z) = \{3\}\},\$$
$$\mathcal{C} = \{ C_1 \equiv x \le y, \ C_2 \equiv y \ne z \} \}$$

$$\begin{array}{lll} \operatorname{counter}[x,1,y]=4 & \operatorname{counter}[y,1,x]=1 & \operatorname{counter}[y,1,z]=1 \\ \operatorname{counter}[x,2,y]=3 & \operatorname{counter}[y,2,x]=2 & \operatorname{counter}[y,2,z]=1 \\ \operatorname{counter}[x,3,y]=2 & \operatorname{counter}[y,3,x]=3 & \operatorname{counter}[y,3,z]=0 \\ \operatorname{counter}[x,4,y]=1 & \operatorname{counter}[y,4,x]=4 & \operatorname{counter}[y,4,z]=1 \\ & \operatorname{counter}[z,3,y]=3 \end{array}$$

$$\begin{split} S[x,1] &= \{(y,1),(y,2),(y,3),(y,4)\} & S[y,1] = \{(x,1),(z,3)\} \\ S[x,2] &= \{(y,2),(y,3),(y,4)\} & S[y,2] = \{(x,1),(x,2),(z,3)\} \\ S[x,3] &= \{(y,3),(y,4)\} & S[y,3] = \{(x,1),(x,2),(x,3)\} \\ S[x,4] &= \{(y,4)\} & S[y,4] = \{(x,1),(x,2),(x,3),(x,4),(z,3)\} \\ &S[z,3] &= \{(y,1),(y,2),(y,4)\} \end{split}$$

AC6

Binary normalized problems

 $S[x_j, v_j]$ list of values (x_i, v_i) currently having (x_j, v_j) as their first support

function AC6(in X: set): Boolean ;

\mathbf{begin}

```
/* initialization */:
         Q \leftarrow \emptyset; S[x_i, v_i] = 0, \forall v_i \in D(x_i), \forall x_i \in X;
 1
         for each x_i \in X, c_{ii} \in C, v_i \in D(x_i) do
 \mathbf{2}
              v_i \leftarrow \text{smallest value in } D(x_i) \text{ s.t. } (v_i, v_i) \in c_{ii};
 3
              if v_i exists then add (x_i, v_i) to S[x_i, v_i];
 4
              else remove v_i from D(x_i) and add (x_i, v_i) to Q;
 5
              if D(x_i) = \emptyset then return false ;
 6
         /* propagation */;
         while Q \neq \emptyset do
 7
              select and remove (x_i, v_i) from Q;
 8
              foreach (x_i, v_i) \in S[x_j, v_j] do
 9
                   if v_i \in D(x_i) then
10
                        v'_i \leftarrow smallest value in D(x_j) greater than v_j s.t. (v_i, v_j) \in c_{ij};
11
                        if v'_i exists then add (x_i, v_i) to S[x_i, v'_i];
12
                        else
13
                             remove v_i from D(x_i); add (x_i, v_i) to Q;
\mathbf{14}
                             if D(x_i) = \emptyset then return false ;
15
16
         return true :
    end
```

$$\mathcal{P} = \langle X = (x, y, z), \ \mathcal{DE} = \{ D(x) = D(y) = \{1, 2, 3, 4\}, \ D(z) = \{3\}\}, \\ \mathcal{C} = \{ C_1 \equiv x \le y, C_2 \equiv y \ne z\} \}$$

$$\begin{split} S[x,1] &= \{(y,1),(y,2),(y,3),(y,4)\} \\ S[x,2] &= \{\} \\ S[x,3] &= \{\} \\ S[x,4] &= \{\} \\ \end{split} \\ \begin{aligned} S[y,2] &= \{(x,1),(z,3)\} \\ S[y,2] &= \{(x,2)\} \\ S[y,3] &= \{(x,3)\} \\ S[y,4] &= \{(x,4)\} \\ S[z,3] &= \{(y,1),(y,2),(y,4)\} \end{aligned}$$

Reverse2001 Binary case

```
function Revise2001(in x_i: variable; c_{ij}: constraint): Boolean ;
    begin
         CHANGE \leftarrow false:
 1
         for each v_i \in D(x_i) s.t. Last(x_i, v_i, x_j) \notin D(x_j) do
 \mathbf{2}
 3
              v_j \leftarrow \text{smallest value in } D(x_j) \text{ greater than } \text{Last}(x_i, v_i, x_j) \text{ s.t.}
             (v_i, v_i) \in c_{ii};
             if v_j exists then Last(x_i, v_i, x_j) \leftarrow v_j;
 \mathbf{4}
              else
 5
                   remove v_i from D(x_i);
 6
                   CHANGE \leftarrow true:
 7
 8
         return CHANGE :
    end
function AC3/GAC3(in X: set): Boolean ;
                                                                                O(ed^2) time O(ed) space
    begin
         /* initalisation */:
 7 Q \leftarrow \{(x_i, c) \mid c \in C, x_i \in X(c)\};
        /* propagation */:
         while Q \neq \emptyset do
 8
 9
             select and remove (x_i, c) from Q;
             if Revise(x_i, c) then
10
                  if D(x_i) = \emptyset then return false;
11
                  else Q \leftarrow Q \cup \{(x_i, c') \mid c' \in C \land c' \neq c \land x_i, x_i \in X(c') \land i \neq i\};
12
13
         return true ;
    end
```

$$\mathcal{P} = \langle X = (x, y, z), \ \mathcal{DE} = \{ D(x) = D(y) = \{1, 2, 3, 4\}, \ D(z) = \{3\}\}, \\ \mathcal{C} = \{ C_1 \equiv x \le y, \ C_2 \equiv y \ne z \} \} \rangle$$

Last[x, 1, y] = 1	$\mathtt{Last}[y,1,x] = 1$	$\mathtt{Last}[y,1,z]=3$
Last[x, 2, y] = 2	$\mathtt{Last}[y,2,x] = 1$	$\mathtt{Last}[y,2,z]=3$
Last[x,3,y] = 3	$\mathtt{Last}[y,3,x]=1$	Last[y, 3, z] = nil
Last[x, 4, y] = 4	$\mathtt{Last}[y,4,x] = 1$	$\mathtt{Last}[y,4,z]=3$
		Last[z,3,y] = 1

Limitation of Arc Consistency

Example

$$\langle x < y, y < z, z < x; x, y, z \in \{1..100000\} \rangle$$

is inconsistent.

Proof: Apply revise to (x, x < y)

 $\langle x < y, y < z, z < x; x \in \{1..99999\}, y, z \in \{1..100000\}\rangle,\$

ecc. we end in a fail.

- Disadvantage: large number of steps.
 Run time depends on the size of the domains!
- Note: we could prove fail by transitivity of <.</p>
 ~ Path consitency involves two constraints together