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Hot Spots
Cold SpotsDocumentation

I Source Code documentation http://www.imada.sdu.dk/~marco/
Misc/EasyLocalpp/doc/html/index.html

I Queens exercise posted for the next class
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Hot Spots
Cold SpotsFramework

Framework set of abstract classes used by inheritance and definition of
methods. It gives indication about where to put everything.
Like a library. But instead of calling it calls your methods.

I Pure virtual methods are called hot spots.

I Warm spots (keep or redefine), virtual functions

I Cold spots are those already defined
Hollywood principle: don’t call us, we call you.
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Hot Spots
Cold SpotsOutline

1. Hot Spots

2. Cold Spots
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Hot Spots
Cold SpotsThe Framework

http://tabu.diegm.uniud.it/EasyLocal++/
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Basics

Helpers

SearchEngines

Solvers

Input Output State Move

StateManager

RandomState()
CheckConsistency()

OutputManager

inputState()
ouputState()
>>,<<

NeighborhoodExplorer

FirstMove()
NextMove()
RandomMove()
MakeMove()
FeasibleMove()
==,=

CostComponent

computeCost()

DeltaComponent

computeDeltaCost()
printViolation()

FirstImprovement

SearchEngine::Go()

SimpleLocalSearch

Solver::AbstractLocalSearch::Solve()

Tester



Hot Spots
Cold SpotsC++: Standard Template Library

I Static arrays array<type>
I Dynamic arrays vector<type>
I lists (no random access) list<type>
I sets (no repetition of elements allowed) set<type> (implemented as

red-black trees)
I maps map<keyttype, type> associative containers that contain

key-value pairs with unique keys. Keys are sorted. (similar to dictionaries
in python) (implemented as red-black trees)

I unordered versions of sets and maps
I They require to include the std library:� �

#include <cstdlib >
#include <vector >
#include <list >
#include <map >
#include <set >
#include <algorithm >
#include <stdexcept >
using namespace std;� �9



Hot Spots
Cold SpotsIterators

I iterators are pointers to elements of STL containers� �
vector <int > A = {1,2,3,4};
vector <int >:: iterator pt; // or vector <int >:: const_iterator
for (pt=A.begin(); pt!=A.end(); pt++)

cout <<*pt;� �
I Type inference:� �

vector <int > A = {1,2,3,4};
vector <int >:: iterator pt1 = A.begin ();
auto pt2 = A.begin ();� �

I for syntax:� �
for (auto &x : my_array) {

x *= 2;
}� �
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Hot Spots
Cold SpotsOutline

1. Hot Spots

2. Cold Spots
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Hot Spots
Cold SpotsSolver::Solve()

In solver/abstractlocalsearch.hh� �
template <class Input , class Output , class State , typename CFtype >
SolverResult <Input , Output , CFtype > AbstractLocalSearch <Input , Output , State , CFtype >:: Solve() throw

(ParameterNotSet , IncorrectParameterValue) {
auto start = std:: chrono :: high_resolution_clock ::now();
InitializeSolve ();
FindInitialState ();
if (timeout.IsSet()) {

SyncRun(std:: chrono :: milliseconds(static_cast <long long int >( timeout * 1000.0)));
} else

Go();
p_out = std:: make_shared < Output > (this ->in);
om.OutputState (* p_best_state , *p_out);
TerminateSolve ();

double run_time = std:: chrono :: duration_cast < std:: chrono ::duration <double , std::ratio <1>>>(std
:: chrono :: high_resolution_clock ::now() - start).count ();

return SolverResult <Input , Output , CFtype >(*p_out , sm.CostFunctionComponents (* p_best_state),
run_time);

}� �
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Hot Spots
Cold SpotsInheritance Diagram
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Hot Spots
Cold SpotsLS Framework: SearchEngine

I SearchEngine classes are the algorithmic core of the framework.

I They are responsible for performing a run of a local search technique,
starting from an initial state and leading to a final one.

I SearchEngine has only Input and State templates, and is connected
to the solvers

I LocalSearch has also Move, and the pointers to the necessary helpers.
It also stores the basic data common to all derived classes:

I current state,
I best state,
I current move,
I number of iterations.
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Hot Spots
Cold SpotsInheritance Diagram
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Hot Spots
Cold SpotsInheritance Diagram

A potential development for local search engines
(here Runner=SearchEngine)
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Hot Spots
Cold SpotsSearchEngine::Go()

In SearchEngine.hh� �
template <class Input , class State , typename CFtype >
CostStructure <CFtype > SearchEngine <Input , State , CFtype >::Go(State& s) throw (ParameterNotSet ,

IncorrectParameterValue)
{

// std:: shared_ptr <State > p_current_state;
// std:: shared_ptr <State > p_best_state;
// state s is only used for input and output
InitializeRun(s); // in searchengine.hh , calls InitializeRun () in localsearch.hh (START)
while (! MaxEvaluationsExpired () && !StopCriterion () && !LowerBoundReached () && !this ->

TimeoutExpired ())
{

PrepareIteration ();
try
{

SelectMove (); // <== in firstimprovement.hh
if (AcceptableMoveFound ()) // <== in localsearch.hh
{

PrepareMove (); // does nothing but virtual
MakeMove (); // in localsearch.hh where it calls MakeMove from NeighborhoodManager (MADE_MOVE)
CompleteMove (); // does nothing but virtual
UpdateBestState (); // in localsearch.hh (NEW_BEST)

}
}
catch (EmptyNeighborhood)
{

break;
}
CompleteIteration (); // does nothing but virtual

}
return TerminateRun(s); // in searchengine.hh , calls InitializeRun () in localsearch.hh (END)

}� �
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Hot Spots
Cold SpotsFirst Improvement in EasyLocal

Definition of

I StopCriterion
I SelectMove
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Hot Spots
Cold SpotsInterruptible

An inheritable class to add timeouts (in milliseconds) to anything.

MakeFunction produces a function object to be launched in a separate
thread by SyncRun, AsyncRun or Tester
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Hot Spots
Cold SpotsParametrized

An inheritable class representing a parametrized component.

In constructors, eg, AbstractLocalSearch
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Hot Spots
Cold SpotsObservers

Infrastructure for printing debugging information on the runner
The command line parameter decides how much verbose the output must be:

I --main::observer 1 for all runners with the observer attached, it
writes some info on the costs everytime the runner finds a new best
state.

I --main::observer 2 it writes also all times that the runner makes a
worsening move

I --main::observer 3, it write all moves executed by the runner.
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Hot Spots
Cold SpotsC++: Lambda functions (aka Closures)

I A function that can be written inline in source code to pass to another
function

I A tutorial:
http://www.cprogramming.com/c++11/c++11-lambda-closures.html� �

auto func = [] () { cout << "Hello world"; };
func(); // now call the function� �� �
vector <int > v {1, 2};
for_each( v.begin (), v.end(), [] (int val) { cout << val; } );� �

I [a,&b] where a is captured by value and b is captured by reference.
I [this] captures the this pointer by value
I [&] captures all variables in the body of the lambda by reference
I [=] captures all variables in the body of the lambda by value
I [] captures nothing� �

[] () { return 1; } // compiler knows this returns an integer
[] () -> int { return 1; } // now we’re telling the compiler what we

want� �
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