
DM841
DISCRETE OPTIMIZATION

Part 2 – Heuristics
EasyLocal

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Hot Spots
Cold SpotsDocumentation

I Source Code documentation http://www.imada.sdu.dk/~marco/
Misc/EasyLocalpp/doc/html/index.html

I Queens exercise posted for the next class

2

http://www.imada.sdu.dk/~marco/Misc/EasyLocalpp/doc/html/index.html
http://www.imada.sdu.dk/~marco/Misc/EasyLocalpp/doc/html/index.html

Hot Spots
Cold SpotsFramework

Framework set of abstract classes used by inheritance and definition of
methods. It gives indication about where to put everything.
Like a library. But instead of calling it calls your methods.

I Pure virtual methods are called hot spots.

I Warm spots (keep or redefine), virtual functions

I Cold spots are those already defined
Hollywood principle: don’t call us, we call you.

3

Hot Spots
Cold SpotsOutline

1. Hot Spots

2. Cold Spots

4

Hot Spots
Cold SpotsThe Framework

http://tabu.diegm.uniud.it/EasyLocal++/

7

http://tabu.diegm.uniud.it/EasyLocal++/

Basics

Helpers

SearchEngines

Solvers

Input Output State Move

StateManager

RandomState()
CheckConsistency()

OutputManager

inputState()
ouputState()
>>,<<

NeighborhoodExplorer

FirstMove()
NextMove()
RandomMove()
MakeMove()
FeasibleMove()
==,=

CostComponent

computeCost()

DeltaComponent

computeDeltaCost()
printViolation()

FirstImprovement

SearchEngine::Go()

SimpleLocalSearch

Solver::AbstractLocalSearch::Solve()

Tester

Hot Spots
Cold SpotsC++: Standard Template Library

I Static arrays array<type>
I Dynamic arrays vector<type>
I lists (no random access) list<type>
I sets (no repetition of elements allowed) set<type> (implemented as

red-black trees)
I maps map<keyttype, type> associative containers that contain

key-value pairs with unique keys. Keys are sorted. (similar to dictionaries
in python) (implemented as red-black trees)

I unordered versions of sets and maps
I They require to include the std library:� �

#include <cstdlib >
#include <vector >
#include <list >
#include <map >
#include <set >
#include <algorithm >
#include <stdexcept >
using namespace std;� �9

Hot Spots
Cold SpotsIterators

I iterators are pointers to elements of STL containers� �
vector <int > A = {1,2,3,4};
vector <int >:: iterator pt; // or vector <int >:: const_iterator
for (pt=A.begin(); pt!=A.end(); pt++)

cout <<*pt;� �
I Type inference:� �

vector <int > A = {1,2,3,4};
vector <int >:: iterator pt1 = A.begin ();
auto pt2 = A.begin ();� �

I for syntax:� �
for (auto &x : my_array) {

x *= 2;
}� �

10

Hot Spots
Cold SpotsOutline

1. Hot Spots

2. Cold Spots

13

Hot Spots
Cold SpotsSolver::Solve()

In solver/abstractlocalsearch.hh� �
template <class Input , class Output , class State , typename CFtype >
SolverResult <Input , Output , CFtype > AbstractLocalSearch <Input , Output , State , CFtype >:: Solve() throw

(ParameterNotSet , IncorrectParameterValue) {
auto start = std:: chrono :: high_resolution_clock ::now();
InitializeSolve ();
FindInitialState ();
if (timeout.IsSet()) {

SyncRun(std:: chrono :: milliseconds(static_cast <long long int >(timeout * 1000.0)));
} else

Go();
p_out = std:: make_shared < Output > (this ->in);
om.OutputState (* p_best_state , *p_out);
TerminateSolve ();

double run_time = std:: chrono :: duration_cast < std:: chrono ::duration <double , std::ratio <1>>>(std
:: chrono :: high_resolution_clock ::now() - start).count ();

return SolverResult <Input , Output , CFtype >(*p_out , sm.CostFunctionComponents (* p_best_state),
run_time);

}� �

14

Hot Spots
Cold SpotsInheritance Diagram

15

Hot Spots
Cold SpotsLS Framework: SearchEngine

I SearchEngine classes are the algorithmic core of the framework.

I They are responsible for performing a run of a local search technique,
starting from an initial state and leading to a final one.

I SearchEngine has only Input and State templates, and is connected
to the solvers

I LocalSearch has also Move, and the pointers to the necessary helpers.
It also stores the basic data common to all derived classes:

I current state,
I best state,
I current move,
I number of iterations.

16

Hot Spots
Cold SpotsInheritance Diagram

17

Hot Spots
Cold SpotsInheritance Diagram

A potential development for local search engines
(here Runner=SearchEngine)

18

Hot Spots
Cold SpotsSearchEngine::Go()

In SearchEngine.hh� �
template <class Input , class State , typename CFtype >
CostStructure <CFtype > SearchEngine <Input , State , CFtype >::Go(State& s) throw (ParameterNotSet ,

IncorrectParameterValue)
{

// std:: shared_ptr <State > p_current_state;
// std:: shared_ptr <State > p_best_state;
// state s is only used for input and output
InitializeRun(s); // in searchengine.hh , calls InitializeRun () in localsearch.hh (START)
while (! MaxEvaluationsExpired () && !StopCriterion () && !LowerBoundReached () && !this ->

TimeoutExpired ())
{

PrepareIteration ();
try
{

SelectMove (); // <== in firstimprovement.hh
if (AcceptableMoveFound ()) // <== in localsearch.hh
{

PrepareMove (); // does nothing but virtual
MakeMove (); // in localsearch.hh where it calls MakeMove from NeighborhoodManager (MADE_MOVE)
CompleteMove (); // does nothing but virtual
UpdateBestState (); // in localsearch.hh (NEW_BEST)

}
}
catch (EmptyNeighborhood)
{

break;
}
CompleteIteration (); // does nothing but virtual

}
return TerminateRun(s); // in searchengine.hh , calls InitializeRun () in localsearch.hh (END)

}� �
19

Hot Spots
Cold SpotsFirst Improvement in EasyLocal

Definition of

I StopCriterion
I SelectMove

20

Hot Spots
Cold SpotsInterruptible

An inheritable class to add timeouts (in milliseconds) to anything.

MakeFunction produces a function object to be launched in a separate
thread by SyncRun, AsyncRun or Tester

22

Hot Spots
Cold SpotsParametrized

An inheritable class representing a parametrized component.

In constructors, eg, AbstractLocalSearch

23

Hot Spots
Cold SpotsObservers

Infrastructure for printing debugging information on the runner
The command line parameter decides how much verbose the output must be:

I --main::observer 1 for all runners with the observer attached, it
writes some info on the costs everytime the runner finds a new best
state.

I --main::observer 2 it writes also all times that the runner makes a
worsening move

I --main::observer 3, it write all moves executed by the runner.

24

Hot Spots
Cold SpotsC++: Lambda functions (aka Closures)

I A function that can be written inline in source code to pass to another
function

I A tutorial:
http://www.cprogramming.com/c++11/c++11-lambda-closures.html� �

auto func = [] () { cout << "Hello world"; };
func(); // now call the function� �� �
vector <int > v {1, 2};
for_each(v.begin (), v.end(), [] (int val) { cout << val; });� �

I [a,&b] where a is captured by value and b is captured by reference.
I [this] captures the this pointer by value
I [&] captures all variables in the body of the lambda by reference
I [=] captures all variables in the body of the lambda by value
I [] captures nothing� �

[] () { return 1; } // compiler knows this returns an integer
[] () -> int { return 1; } // now we’re telling the compiler what we

want� �
25

http://www.cprogramming.com/c++11/c++11-lambda-closures.html

	Hot Spots
	Cold Spots

