
DM841
DISCRETE OPTIMIZATION

Part 2 – Heuristics
Efficiency Issues

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

2

Efficient Local Search
Computational Complexity
On the AssignmentSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. evaluation function fπ : S → R

3. neighborhood relation Nπ ⊆ Sπ × Sπ

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}

3

Efficient Local Search
Computational Complexity
On the AssignmentEfficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)

B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood

4

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

5

Efficient Local Search
Computational Complexity
On the AssignmentSingle Machine Total Weighted Tardiness Problem

I Interchange: size
(n
2

)
and O(|i − j |) evaluation each

I first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

I best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation
I Swap: size n − 1 and O(1) evaluation each
I Insert: size (n − 1)2 and O(|i − j |) evaluation each

But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i − j | swaps hence overall
examination takes O(n2)

6

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

8

Efficient Local Search
Computational Complexity
On the AssignmentTSP

Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

A. Delta evaluation already in O(1)

B. Fixed radius search + DLB

C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch,
2002; Applegate et al., 2006]

9

Efficient Local Search
Computational Complexity
On the AssignmentLocal Search for the Traveling Salesman Problem

I k-exchange heuristics
I 2-opt
I 2.5-opt
I Or-opt
I 3-opt

I complex neighborhoods
I Lin-Kernighan
I Helsgaun’s Lin-Kernighan
I Dynasearch
I ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don’t look bits: focus perturbative search to “interesting” part
4. sophisticated data structures

Implementation examples by Stützle:
http://www.sls-book.net/implementations.html

10

http://www.sls-book.net/implementations.html

Efficient Local Search
Computational Complexity
On the Assignment

TSP data structures
Tour representation:

I determine pos of v in π
I determine succ and prec
I check whether uk is visited between ui and uj

I execute a k-exchange (reversal)
Possible choices:

I |V | < 1.000 array for π and π−1

I |V | < 1.000.000 two level tree
I |V | > 1.000.000 splay tree

Moreover static data structure:
I priority lists
I k-d trees

11

Efficient Local Search
Computational Complexity
On the Assignment

Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c� �
two_opt_b(tour); % best improvement , no speedup
two_opt_f(tour); % first improvement , no speedup
two_opt_best(tour); % first improvement including speed -ups (dlbs ,

fixed radius near neighbour searches , neughbourhood lists)
two_opt_first(tour); % best improvement including speed -ups (dlbs ,

fixed radius near neighbour searches , neughbourhood lists)
three_opt_first(tour); % first improvement� �

12

http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

Efficient Local Search
Computational Complexity
On the Assignment

[Appelgate Bixby, Chvátal, Cook, 2006]

13

Efficient Local Search
Computational Complexity
On the Assignment

14

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

16

Efficient Local Search
Computational Complexity
On the AssignmentMAX-SAT

Notation:

I n 0-1 variables xj , j ∈ N = {1, 2, ..., n},

I m clauses Ci , i ∈ M, and weights wi (≥ 0), i ∈ M = {1, 2, . . . ,m}

I maxa∈{0,1}n
∑
{wi | i ∈ M and Ci is satisfied in a}

I x̄j = 1− xj

I L =
⋃

j∈N{xj , x̄j} set of literals

I Ci ⊆ L for i ∈ M (e.g., Ci = {x1, x̄3, x8}).

17

Let’s take the case wi = 1 for all i ∈ M

I Assignment: a ∈ {0, 1}n

I Evaluation function: f (a) = # unsatisfied clauses
I Neighborhood: one-flip
I Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of
largest Ci)
A better approach:

I C(xj) = {i ∈ M | xj ∈ Ci} (i.e., clauses dependent on xj)
I L(xj) = {l ∈ N | ∃i ∈ M with xl ∈ Ci and xj ∈ Ci}
I f (a) = # unsatisfied clauses
I ∆(xj) = f (a)− f (a′), a′ = δ

xj
1E (a) (score of xj)

Initialize:
I compute f , score of each variable, and list unsat clauses in O(mk)

I init C(xj) for all variables
Examine Neighborhood

I choose the var with best score
Update:

I change the score of variables affected, that is, look in C(·) O(mk)

Efficient Local Search
Computational Complexity
On the Assignment

C (xj) Data Structure

19

Even better approach (though same asymptotic complexity):
 after the flip of xj only the score of variables in L(xj) that critically depend on xj

actually changes

I Clause Ci is critically satisfied by a variable xj in a iff:
I xj is in Ci
I Ci is satisfied in a and flipping xj makes Ci unsatisfied

(e.g., 1 ∨0 ∨ 0 but not 1 ∨1 ∨ 0)
Keep a list of such clauses for each var

I xj is critically dependent on xl under a iff:
there exists Ci ∈ C(xj) ∩ C(xl) and such that flipping xj :

I Ci changes from satisfied to not satisfied or viceversa
I Ci changes from satisfied to critically satisfied by xl or viceversa

Initialize:
I compute score of variables;
I init C(xj) for all variables
I init status criticality for each clause (ie, count # of ones per clause)

Update:
change sign to score of xj

for all Ci in C(xj) where critically dependent vars are do
for all xl ∈ Ci do

update score xl depending on its critical status before flipping xj

Efficient Local Search
Computational Complexity
On the AssignmentReferences

Applegate D.L., Bixby R.E., Chvátal V., and Cook W.J. (2006). The Traveling
Salesman Problem: A Computational Study. Princeton University Press.

Bentley J. (1992). Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4), pp. 387–411.

Johnson D.S. and McGeoch L.A. (2002). Experimental analysis of heuristics for the
STSP. In The Traveling Salesman Problem and Its Variations, edited by G. Gutin
and A. Punnen, pp. 369–443. Kluwer Academic Publishers, Boston, MA, USA.

21

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

22

Efficient Local Search
Computational Complexity
On the AssignmentComputational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

I search initialization
I any single search step, including computation of

evaluation function value

For any problem in PLS . . .
I local optimality can be verified in polynomial time
I improving search steps can be computed in polynomial time
I but: finding local optima may require super-polynomial time

23

Efficient Local Search
Computational Complexity
On the AssignmentComputational Complexity of LS

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:
I TSP with k-exchange neighborhood with k > 3

is PLS-complete.

I TSP with 2- or 3-exchange neighborhood is in PLS, but
PLS-completeness is unknown.

24

Efficient Local Search
Computational Complexity
On the AssignmentOutline

1. Efficient Local Search
SMTWTP
TSP
Efficiency in SAT

2. Computational Complexity

3. On the Assignment

25

Efficient Local Search
Computational Complexity
On the AssignmentComments to Last Year Submissions

- Focus on relevant aspects, not on trivial and known features. For
example, explaining the EasyLocal is not necessary as we all know
about it. The algorithmic sketch must be on a relevant and original
procedure. What you choose to describe and to show algorithmically
will also be used to decide the grade.

- Be formal and do not use terms like "stupid". Do not tell about lack
of time (everybody always lacks of time anyway).

- Do not make speculations but try to support your claims by
experimental or analytic evidence.

- Define the notation that you use

- The calculation of the Delta by incremental updates is a requirement

- Recognize the algorithms that you end up implementing and give their
name.

- Random restart is really a basic algorithm and you have to do better
than that. 26

Efficient Local Search
Computational Complexity
On the Assignment

- You will get credit for how involved the method is and for the amount
of work done.

- Check whether your algorithm has chances for ending in a loop. That
would be bad.

- Your algorithms must be 100% reproducible by only reading the report.

- Write what you have done not what you would/could have done.

- Make a clear list of the algorithms you tested and give names to the
algorithms you are describing. In this way it becomes clearer what you
are precisely referring to. When writing the name of the algorithms
use a different style, for example, sanserif or slanted, etc.

- Remember to give the big O analysis of the main procedures, that is,
constructing a solution, initializing the data structures, evaluating
a move, deciding a step in the local search and updating the data
structures (ie, ensuring invariants).

27

Efficient Local Search
Computational Complexity
On the Assignment

- Write the report keeping in mind that the reader will be the external
censor, Stefan Ropke. He is well acknowledged about local search and
heuristics but has not been at the lectures and hence he does not know
what we have precisely discussed about.

- Consider carefully the focus of your description and algorithmic
sketches. This choice is alone providing to the examiners an
indication of the level reached in this course. Reporting general
sketches that have been seen in class is not a smart choice. A more
appropriate choice is showing the specialized, non-trivial procedures
that you have developed, that may indicate the originality and depth
of thought in your work.

- Make it possible to distinguish entities in your plots to both readers
that will print in colors and to those that will print in black and
white.

- Leave a space before opening a parenthesis. Example: "Heuristics(DM841)" is
wrong. "Heuristics (DM841)" is correct.

28

	Efficient Local Search
	SMTWTP
	TSP
	Efficiency in SAT

	Computational Complexity
	On the Assignment

