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I We work with samples (instances, solution quality)
I But we want sound conclusions: generalization over a given population

(all runs, all possible instances)
I Thus we need statistical inference

Random Sample
X n

Statistical Estimator θ̂

Population
P(x , θ)

Parameter θ

Inference

Since the analysis is based on finite-sized sampled data, statements like
“the cost of solutions returned by algorithm A is smaller than that
of algorithm B”

must be completed by

“at a level of significance of 5%”.
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I There is a competition and two stochastic algorithms A1 and A2 are
submitted.

I We run both algorithms once on n instances.
On each instance either A1 wins (+) or A2 wins (−) or they make a tie
(=).

Questions:

1. If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

2. How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?
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I p: probability that A1 wins on each instance (+)
I n: number of runs without ties
I Y : number of wins of algorithm A1

If each run is indepenedent and consitent:

Y ∼ B(n, p) : Pr[Y = y ] =

(
n
y

)
py (1− p)n−y
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1 If we have only 10 instances and algorithm A1 wins 7 times how
confident are we in claiming that algorithm A1 is the best?

Under these conditions, we can check how unlikely the situation is if it was
p(+) ≤ p(−).

If p(+) = 0.5 (ie, p(+) = p(−)) then the chance that algorithm A1 wins 7 or
more times out of 10 is 17.2%: quite high!
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2 How many instances and how many wins should we observe to gain a
confidence of 95% that the algorithm A1 is the best?

To answer this question, we compute the 95%-quantile, i.e.,
y : Pr[Y ≥ y ] < 0.05 with p = 0.5 at different values of n:

n 10 11 12 13 14 15 16 17 18 19 20
y 9 9 10 10 11 12 12 13 13 14 15

This is an application example of sign test, a special case of binomial test in
which p = 0.5
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General procedure:

I Assume that data are consistent with a null hypothesis H0 (e.g., sample
data are drawn from distributions with the same mean value).

I Use a statistical test to compute how likely this is to be true, given the
data collected. This “likely” is quantified as the p-value.

I Do not reject H0 if the p-value is larger than an user defined threshold
called level of significance α.

I Alternatively, (p-value < α), H0 is rejected in favor of an alternative
hypothesis, H1, at a level of significance of α.
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Two kinds of errors may be committed when testing hypothesis:

α = P(type I error) = P(reject H0 | H0 is true)

β = P(type II error) = P(fail to reject H0 | H0 is false)

General rule:

1. specify the type I error or level of significance α
2. seek the test with a suitable large statistical power, i.e.,

1− β = P(reject H0 |H0 is false)
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Theorem: Central Limit Theorem

If X n is a random sample from an arbitrary distribution with mean µ and
variance σ then the average X̄ n is asymptotically normally distributed, i.e.,

X̄ n ≈ N(µ,
σ2

n
) or z =

X̄ n − µ
σ/
√
n
≈ N(0, 1)

I Consequences:
I allows inference from a sample
I allows to model errors in measurements: X = µ+ ε

I Issues:
I n should be enough large
I µ and σ must be known
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A test of hypothesis determines how
likely a sampled estimate θ̂ is to occur
under some assumptions on the
parameter θ of the population.

Pr
{
µ−z1

σ√
n
≤ X̄ ≤ µ+z2

σ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3

A confidence interval contains all
those values that a parameter θ is
likely to assume with probability
1− α: Pr(θ̂1 < θ < θ̂2) = 1− α

Pr
{
X̄−z1

σ√
n
≤ µ ≤ X̄+z2

σ√
n

}
= 1−α

µ
X̄1

X̄2

X̄3
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The Procedure of Test of Hypothesis

θ

µ1 µ2

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P(θ | θ = 0), the null distribution
of θ

3. Compare θ̂ with the α/2-quantiles (for
two-sided tests) of P(θ | θ = 0) and
reject or not H0 according to whether θ̂ is
larger or smaller than this value.
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The Confidence Intervals Procedure

θ

µ1 µ2

N(µ1, σ) N(µ2, σ)

(X̄1, SX1) (X̄2, SX2)

θ = 0
θ̂

θ̂

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P(θ, θ = 0), the null
distribution of θ in correspondence of
the observed estimate θ̂ of the sample
X

3. Determine (θ̂−, θ̂+) such that
Pr{θ̂− ≤ θ ≤ θ̂+} = 1− α.

4. Do not reject H0 if θ = 0 falls inside
the interval (θ̂−, θ̂+). Otherwise
reject H0.
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The Confidence Intervals Procedure

P(θ1) P(θ2)

T =
(X̄1−X̄2)−

(
µ1−µ2

)
√

SX1−SX2
r

T̃ Student’s t Distribution
θ∗ = X̄∗

1 − X̄∗
2

θ = 0
θ̂

θ̂

1. Specify the parameter θ and the test
hypothesis,

θ = µ1 − µ2

{
H0 : θ = 0
H1 : θ 6= 0

2. Obtain P(θ, θ = 0), the null
distribution of θ in correspondence of
the observed estimate θ̂ of the sample
X

3. Determine (θ̂−, θ̂+) such that
Pr{θ̂− ≤ θ ≤ θ̂+} = 1− α.

4. Do not reject H0 if θ = 0 falls inside
the interval (θ̂−, θ̂+). Otherwise
reject H0.
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The test compares empirical cumulative distribution functions.
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It uses maximal difference between the two curves, supx |F1(x)− F2(x)|, and
assesses how likely this value is under the null hypothesis that the two curves
come from the same data

The test can be used as a two-samples or single-sample test (in this case to
test against theoretical distributions: goodness of fit)

The test can be done in R with ks.test
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Parametric assumptions:
I independence
I homoschedasticity
I normality

N(µ, σ)

Nonparametric assumptions:
I independence
I homoschedasticity

P(θ)

I Rank based tests
I Permutation tests

I Exact
I Conditional Monte Carlo
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Variance reduction techniques
I Blocking on instances
I Same pseudo random seed

Sample Sizes

I If the sample size is large enough (infinity) any difference in the means
of the factors, no matter how small, will be significant

I Real vs Statistical significance
Study factors until the improvement in the response variable is deemed
small

I Desired statistical power + practical precision ⇒ sample size

Note: If resources available for N runs then the optimal design is one run on
N instances [Birattari, 2004]
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I Statement of the objectives of the experiment
I Comparison of different algorithms
I Impact of algorithm components
I How instance features affect the algorithms

I Identification of the sources of variance
I Treatment factors (qualitative and quantitative)
I Controllable nuisance factors ⇐ blocking
I Uncontrollable nuisance factors ⇐ measuring

I Definition of factor combinations to test
Easiest design: Unreplicated or Replicated Full Factorial Design

I Running a pilot experiment and refine the design
I Bugs and no external biases
I Ceiling or floor effects
I Rescaling levels of quantitative factors
I Detect the number of experiments needed to obtained the desired power.

26



Outline
Inferential Statistics
Sequential Testing
Algorithm SelectionExperimental Design

Algorithms⇒ Treatment Factor; Instances⇒ Blocking/Random Factor

Design A: One run on various instances (Unreplicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances (Replicated Factorial)

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . ,X11r X121, . . . ,X12r X1k1, . . . ,X1kr
Instance 2 X211, . . . ,X21r X221, . . . ,X22r X2k1, . . . ,X2kr

...
...

...
...

Instance b Xb11, . . . ,Xb1r Xb21, . . . ,Xb2r Xbk1, . . . ,Xbkr
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H0 : µ1 = µ2 = µ3 = . . . H1 : {at least one differs}

Applying a statistical test to all pairs the error of Type I is not α but higher:

αEX = 1− (1− α)c

Eg, for α = 0.05 and c = 3 ⇒ αEX = 0.14!

Adjustment methods

I Protected versions: global test + no adjustments
I Bonferroni α = αEX/c (conservative)
I Tukey Honest Significance Method (for parametric analysis)
I Holm (step-wise)
I Other step-wise procedures

Post-hoc analysis: Once the effect of factors has been recognized a finer
grained analysis is performed to distinguish where important differences are.
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Univariate Analysis

Several runs on a single instance

Global tests Replicated

Parametric F-test

Non-Parametric
Rank based Kruskall-Wallis Test

Non-Parametric
Permutation based Pooled Permutations

Non-Parametric
KS type Birnbaum-Hall test
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Univariate Analysis

Several runs on a single instance

Pairwise tests Replicated

Parametric
t-test

Tukey HSD

Non-Parametric
Rank based

Kruskall-Wallis Test
or Mann-Whitney test ≡ Wilcoxon

Rank Sum Test or
Binomial test

Non-Parametric
Permutation based Pooled Permutations

Non-Parametric
KS type Birnbaum-Hall test

I Matched pairs versions: when, when not
I t-test with different variances
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Univariate Analysis

On various instances (Designs A and B)

Global tests Unreplicated (Design A) Replicated (Design B)

Parametric F-test F-test

Non-Parametric
Rank based

Friedman Test Friedman Test

Non-Parametric
Permutation based

Simple Permutations Synchronized Permutations
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Univariate Analysis

On various instances (Designs A and B)

Pairwise tests Unreplicated Replicated

Parametric
t-test

Tukey HSD
t-test

Tukey HSD

Non-Parametric
Rank based

Friedman Test
or Wilcoxon Signed Rank

Test
Friedman Test

Non-Parametric
Permutation based

Simple Permutations Synchronized Permutations

I Matched pairs versions: when, when not
I t-test Welch variant: no assumption of equal variances
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SLS algorithms for Graph Coloring:
Results collected on a set of benchmark instances

Instance HEA TSN1 ILS MinConf XRLF
Instance Succ. k Succ. k Succ. k Succ. k Succ. k
flat300_20_0 10 20 10 20 10 20 10 20 6 20
flat300_26_0 10 26 10 26 10 26 10 26 1 33
flat300_28_0 6 31 4 31 2 31 1 31 1 34
flat1000_50_0 4 50 2 85 6 88 4 87 1 84
flat1000_60_0 4 87 3 88 1 89 4 89 6 87
flat1000_76_0 1 88 1 88 1 89 8 90 6 87

GLS SAN2 Novelty TSN3
Instance Succ. k Succ. k Succ. k Succ. k
flat300_20_0 10 20 10 20 1 22 1 33
flat300_26_0 10 33 1 32 4 29 6 35
flat300_28_0 8 33 8 33 10 35 4 35
flat1000_50_0 10 50 1 86 6 54 1 95
flat1000_60_0 4 90 1 88 4 64 1 96
flat1000_76_0 8 92 4 89 8 98 1 96
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Raw data on
the instances:

col
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� �
> load("gcp -all -classes.dataR")
> G <- F[F$class ==" Flat",]
> bwplot(alg ~ col | inst ,data=G,scales=list(x=list(relation ="free")),

pch ="|")
> boxplot(err3~alg ,data=G,horizontal=TRUE ,main=expression(paste("

Invariant error: ",frac(x-x^(opt),x^(worst)-x^(opt)))),notch=TRUE ,
col="pink")

> boxplot(rank~alg ,data=G,horizontal=TRUE ,main="Ranks",notch=TRUE ,col="
pink")� �
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Note: notches
are not
appropriate for
comparative
inference
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� �
> pairwise.wilcox.test(G$err3 ,G$alg ,paired=TRUE)

Pairwise comparisons using Wilcoxon rank sum test

data: G$err3 and G$alg� �
Novelty HEA TSinN1 ILS MinConf GLS2 XRLF SAKempeFI

HEA 1.00000 - - - - - - -
TSinN1 1.00000 0.00413 - - - - - -
ILS 1.00000 1.3e-05 0.00072 - - - - -
MinConf 1.00000 9.4e-06 0.00042 1.00000 - - - -
GLS2 1.00000 0.11462 0.94136 1.00000 1.00000 - - -
XRLF 0.25509 1.7e-05 0.02624 0.72455 0.47729 1.00000 - -
SAKempeFI 0.72455 1.4e-07 3.0e-06 0.02708 0.02113 1.00000 1.00000 -
TSinN3 3.7e-08 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10 5.8e-10

P value adjustment method: holm
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> par(las=1,mar=c(3,8,3,1))
> plot(TukeyHSD(aov(err3~alg*inst ,data=G),which="alg"),las=1,mar=c

(3,7,3,1))� �
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X1 X2 X3

X1−X2

Alg. 1

Alg. 2

Alg. 3

MSD
2

Minimal Significant Difference
(MSD)

interval that satisfies
simultaneously each
comparison

Differences are statistically significant if the confidence intervals do not overlap
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Procedure Race [Birattari 2002]:
repeat

Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm

until only one candidate left or no more unseen instances;

I F-Race use Friedman test
I Holm adjustment method is typically the most powerful� �

race(wrapper.file , maxExp=0,
stat.test=c("friedman","t.bonferroni","t.holm","t.none"),

conf.level =0.95, first.test=5, interactive=TRUE ,
log.file="", no.slaves =0 ,...)� �
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1. sample new configurations according to a particular distribution,

2. select the best configurations from the newly sampled ones by means of
racing, and

3. update the sampling distribution in order to bias the sampling towards
the best configurations
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I Each configurable parameter has associated a sampling distribution that
is independent of the sampling distributions of the other parameters,
apart from constraints and conditions among parameters.

I numerical parameters: truncated normal distribution

I categorical parameters: discrete distribution.

I The update of the distributions consists in modifying the mean and the
standard deviation in the case of the normal distribution, or the discrete
probability values of the discrete distributions.

I The update biases the distributions to increase the probability of
sampling, in future iterations, the parameter values in the best
configurations found so far.
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Observation: algorithms’ performance depends on the problem instance.

Idea: a set of complementary algorithms can be constructed, then identifying
when to use which algorithm, we can improve overall performance

Algorithm Selection Problem (aka per-instance algorithm selection or offline
algorithm selection) is a meta-algorithmic technique to choose an algorithm
from a portfolio on an instance-by-instance basis.

Problem formulation:
Given a portfolio P of algorithms A ∈ P, a set of instances i ∈ I and a cost
metric m : P × I → R, the algorithm selection problem consists of finding a
mapping s : I → P from instances I to algorithms P such that the cost∑
i∈I

m(s(i), i) across all instances is optimized
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SAT:

I the portfolio of algorithms is a set of (complementary) SAT solvers
I the instances are Boolean formulas
I the cost metric is for example average runtime or number of unsolved

instances
I Portfolio algorithms are commonly the winners at

http://www.satcompetition.org
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I The algorithm selection problem is mainly solved with machine learning
techniques.

I represent the problem instances by numerical features f ,

I then algorithm selection can be seen as a multi-class classification
problem by learning a mapping fi 7→ A for a given instance i .

I Instance features are numerical representations of instances. For
example, we can count the number of variables, clauses, average clause
length for Boolean formulas (static) or the result of running for a short
time a stochastic local search solver on a Boolean formula (probing).
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I Regression Approach
predict the performance of each algorithm m̂A : I → R and select the
algorithm with the best predicted performance arg min

A∈P
m̂A(i) for a new

instance i

I Clustering Approach
Training consists of identifying the homogeneous clusters via an
unsupervised clustering approach and associating an algorithm with each
cluster. A new instance is assigned to a cluster and the associated
algorithm selected.

I Pairwise Cost-Sensitive Classification Approach
learn pairwise models between every pair of classes (here algorithms) and
choose the class that was predicted most often by the pairwise models.
We can weight the instances of the pairwise prediction problem by the
performance difference between the two algorithms (we care most about
getting predictions with large differences correct, but the penalty for an
incorrect prediction is small if there is almost no performance difference).
Therefore, each instance i for training a classification model A1 vs A2 is
associated with a cost |m(A1, i)−m(A2, i)|

55



Outline
Inferential Statistics
Sequential Testing
Algorithm SelectionVariants of Algorithm Selection

I Online Selection
Online algorithm selection in Hyper-heuristic refers to switching between
different algorithms during the solving process. In contrast, (offline)
algorithm selection is an one-shot game where we select an algorithm for
a given instance only once.

I Computation of Schedules
we select a time budget for each algorithm on a per-instance base. It
improves the performance of selection systems in particular if the
instance features are not very informative and a wrong selection of a
single solver is likely.

I Selection of Parallel Portfolios
Given the increasing importance of parallel computation, an extension of
algorithm selection for parallel computation is parallel portfolio selection,
in which we select a subset of the algorithms to simultaneously run in a
parallel portfolio.
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