DM841
DISCRETE OPTIMIZATION

Part 2 — Heuristics

(Stochastic) Local Search Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local Search Algorithms
Basic Algorithms

O utl i ne Local Search Revisited

1. Local Search Algorithms

2. Basic Algorithms

3. Local Search Revisited
Components

Local Search Algorithms
Basic Algorithms

O utl i ne Local Search Revisited

1. Local Search Algorithms

Local Search Algorithms

Local Search Algorithms

Given a (combinatorial) optimization problem [1 and one of its instances

1. search space S(7)

» specified by the definition of (finite domain, integer) variables and
their values handling implicit constraints

» all together they determine the representation of candidate solutions

» common solution representations are discrete structures such as:
sequences, permutations, partitions, graphs
(e.g., for SAT: array, sequence of truth assignments
to propositional variables)

Note: solution set S'(7) C S(7)
(e.g., for SAT: models of given formula)

Local Search Algorithms
Basic Algorithms

Local Search Algorithms (cntd) Local Search Revisieed

2. evaluation function f; : S(7) — R

» it handles the soft constraints and the objective function
(e.g., for SAT: number of false clauses)

3. neighborhood function, A/, : § — 25(7)

> defines for each solution s € S(7) a set of solutions N(s) C S(r)
that are in some sense close to s.
(e.g., for SAT: neighboring variable assignments differ
in the truth value of exactly one variable)

Local Search Algorithms

Local Search Algorithms (cntd) Basic Algorithme

Local Search Revisited
Further components [according to [HS]]

4. set of memory states M(m)
(may consist of a single state, for LS algorithms that
do not use memory)

5. initialization function init : () — S(m)
(can be seen as a probability distribution Pr(S(7) x M(7)) over initial
search positions and memory states)

6. step function step : S(m) x M(w) — S(m) x M(x)
(can be seen as a probability distribution Pr(S(7) x M(x)) over
subsequent, neighboring search positions and memory states)

7. termination predicate terminate : S(7) x M(w) — {T,L}
(determines the termination state for each
search position and memory state)

Local Search Algorithms
Basic Algorithms

LOCE]I Search —_— global View Local Search Revisited

Neighborhood graph
o » vertices: candidate solutions
i (search positions)

> vertex labels: evaluation function

» edges: connect “neighboring”
positions

> s: (optimal) solution

» c: current search position

Local Search Algorithms

Iterative Improvement

Iterative Improvement (lI1):
determine initial candidate solution s
while s has better neighbors do
L choose a neighbor s of s such that f(s") < f(s)
s:=¢

» If more than one neighbor have better cost then need to choose one
(heuristic pivot rule)

» The procedure ends in a local optimum 5:
Def.: Local optimum 5 w.r.t. N if £(3) < f(s) Vs € N(8)

> Issue: how to avoid getting trapped in bad local optima?

» use more complex neighborhood functions
> restart
> allow non-improving moves

Local Search Algorithms

Basic Algorit
Example: Local Search for SAT Local Search Revisieed

Example: Uninformed random walk for SAT (1)

» solution representation and search space S:
array of boolean variables representing the truth assignments to variables
in given formula F
no implicit constraint
(solution set S': set of all models of F)

» neighborhood relation N: 1-flip neighborhood, i.e., assignments are
neighbors under A\ iff they differ in
the truth value of exactly one variable

» evaluation function handles clause and proposition constraints
f(s) = 0 if model f(s) = 1 otherwise

» memory: not used, i.e., M := ()

10

Local Search Algorithms
Basic Algorithms
Local Search Revisited

Example: Uninformed random walk for SAT (2)

» initialization: uniform random choice from S, i.e.,
init(,{a’, m}) := 1/|S| for all assignments &’ and
memory states m

» step function: uniform random choice from current neighborhood, i.e.,
scep({a, m}, {a', m}) := 1/|N(a)|
for all assignments a and memory states m,
where N(a) :={a" € S| N(a,a')} is the set of
all neighbors of a.

» termination: when model is found, i.e.,
terminate({a, m}) := T if ais a model of F, and 0 otherwise.

11

Local Search Algorithms
Basic Algorithms

N-Queens Problem B e ieed

N-Queens problem
Input: A chessboard of size N x N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

Local Search Algorithms
Local Search Examples Do Al e
Random Walk

queensLS0a.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Sizel(m,Size) := distr.get();
ConstraintSystem<LS> S(m);

.post (alldifferent (queen)) ;
.post(alldifferent (all(i in Size) queen[i] + i));
.post(alldifferent (all(i in Size) queen[i] - i));
.close () ;

g5 nnwn

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select (q in Size, v in Size) {

queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<y<<" viol: "<<S.
violations () <<endl;
}
it = it + 1;

}

cout << queen << endl;

Local Search Examples
Another Random Walk

Local Search Algorithms
Basic Algorithms
Local Search Revisited

queensLS1.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Sizel(m,Size) := distr.get();
ConstraintSystem<LS> S(m);

.post (alldifferent (queen)) ;
.post(alldifferent (all(i in Size) queen[i] + i));
.post(alldifferent (all(i in Size) queen[i] - i));
.close () ;

g5 nnwn

int it = 0;
while (S.violations() > 0 && it < 50 * n) {

select(q in Size : S.violations(queen[ql)>0, v in Size)
queen[q] := v;
cout <<"chng @ "<<it<<": queen["<<q<<"]:="<<y<<" viol:
violations () <<endl;
}
it = it + 1;

}

cout << queen << endl;

{

"<<S.

14

Local Search Algorithms

Metaheuristics

» Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics ("diversified" =
multiple, variable-size, and rich).

» Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

» Simulated annealing
Allow degrading solutions

> “Restart” + parallel search

Avoid local optima
Improve search space coverage

15

Local Search Algorithms
Basic Algorithms

Summary: Local Search Algorithms — tesiserchreviice

For given problem instance 7:

1. search space S, solution representation: variables + implicit constraints
2. evaluation function 7, : S — R, soft constraints + objective

3. neighborhood relation NV, C S x S,

4. set of memory states M,

5. initialization function init :) — S; x M)

6. step function step: S, x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}

16

Decision vs Minimization

LS-Decision()
input: problem instance 7 € I1
output: solution s € S'(7) or ()

(s, m) := init(m)

while not terminate(r, s, m) do
| (s, m) := step(m,s,m)

if s € S'(m) then
| return s

else
L return ()

Local Search Algorithms

LS-Minimization(7")

input: problem instance 7' € I

output: solution s € S'(7") or ()

(s, m) := init(n’);

Sp .= S,

while not terminate(n’, s, m) do
(s, m) := step(n’, s,m);
if f(7',s) < f(n',5) then

L Sp:=Ss;
if s, € S'(7') then
| return s,

else
L return ()

However, the algorithm on the left has little guidance, hence most often
decision problems are transformed in optimization problems by, eg, couting

number of violations.

17

Outline

2. Basic Algorithms

Local Search Algorithms
Basic Algorithms
Local Search Revisited

18

Local Search Algorithms
Basic Algorithms

Iterative Improvement Dot Seh ovsined

» does not use memory
» init: uniform random choice from S or construction heuristic

» step: uniform random choice from improving neighbors

Pr(s.) — {1/|/(5)| if ' € I(s)

0 otherwise
where [(s) :={s' € S| N(s,s") and f(s') < f(s)}
» terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

19

Basic Algorithms

Iterative Improvement (cntd)

Pivoting rule decides which neighbors go in /(s)

> Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
ie, I(s):={s" € N(s)|f(s') =g"}
where g* := min{f(s") | s’ € N(s)}.

Note: Requires evaluation of all neighbors in each step!

» First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.

20

Local Search Algorithms
Basic Algorithms

Examples oesi Seteeh Rovisieed

Iterative Improvement for SAT

>

search space S: set of all truth assignments to variables in given formula F
(solution set S': set of all models of F)

neighborhood relation N: 1-flip neighborhood
memory: not used, i.e., M := {0}

initialization: uniform random choice from S, i.e., init(), {a}) := 1/|S] for all
assignments a

evaluation function: f(a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f(a) = 0 iff ais a model of F.)

step function: uniform random choice from improving neighbors, i.e.,
step(a,a’) := 1/|/(a)| if &’ € I(a),

and 0 otherwise, where /(a) := {a' | N(a,a') A f(a') < f(a)}
termination: when no improving neighbor is available

i.e., terminate(a) := T if /(a) = (), and O otherwise.

21

Local Search Algorithms
Basic Algorithms
Local Search Revisited

Examples

Random order first improvement for SAT

URW-for-SAT(F,maxSteps)
input: propositional formula F, integer maxSteps
output: a model for F or ()

choose assignment ¢ of truth values to all variables in F
uniformly at random;
steps := 0;
while — (¢ satisfies F) and (steps < maxSteps) do
select x uniformly at random from {x’|x is a variable in F and
changing value of x’ in ¢ decreases the number of unsatisfied clauses}
steps := steps+1;
if ¢ satisfies F then
| return ¢
else
L return ()

22

. Local Search Algorithms
Local Search Algorithms Boic Alsrthme

Iterative Improvement

queensLS00.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Sizel(m,Size) := distr.get();
ConstraintSystem<LS> S(m);

.post (alldifferent (queen)) ;
.post(alldifferent (all(i in Size) queen[i] + i));
.post(alldifferent (all(i in Size) queen[i] - i));
.close () ;

g5 nnwn

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select (q in Size, v in Size : S.getAssignDelta(queenl[ql,v) < 0) {

queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<y<<" viol: "<<S.
violations () <<endl;
}
it = it + 1;

}

cout << queen << endl;

23

. Local Search Algorithms
Local Search Algorithms Boic Alsrthme

Best Improvement

queensLS0.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Sizel(m,Size) := distr.get();
ConstraintSystem<LS> S(m);

.post (alldifferent (queen)) ;
.post(alldifferent (all(i in Size) queen[i] + i));
.post(alldifferent (all(i in Size) queen[i] - i));
.close () ;

g5 nnwn

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
selectMin(q in Size,v in Size) (S.getAssignDelta(queenl[ql,v)) {

queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<y<<" viol: "<<S.
violations () <<endl;
}
it = it + 1;

}

cout << queen << endl;

Local Search Algorithms

First Improvement

Local Search Algorithms
Basic Algorithms
Local Search Revisited

queenslLS2.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Sizel(m,Size) := distr.get();
ConstraintSystem<LS> S(m);

.post (alldifferent (queen)) ;
.post(alldifferent (all(i in Size) queen[i] + i));
.post(alldifferent (all(i in Size) queen[i] - i));
.close () ;

g5 nnwn

int it = 0;
while (S.violations() > 0 && it < 50 * n) {

queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<g<<"] := "<<y<<"
violations () <<endl;
}
it = it + 1;

}

cout << queen << endl;

selectFirst(q in Size, v in Size: S.getAssignDelta(queen[ql,v) < 0) {

viol: "<<S.

25

. Local Search Algorithms
Local Search Algorithms B e ved
Min Conflict Heuristic

queensLSOb.co

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post (alldifferent (queen));
S.post(alldifferent (all(i in Size) queen[i] + 1i));
S.post(alldifferent (all(i in Size) queen[i] - 1i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select (q in Size : S.violations(queenl[q])>0) {
selectMin(v in Size) (S.getAssignDelta(queenlql,v)) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"] := "<<y<<" viol: "<<S.
violations () <<endl;

it = it + 1;
}
}

cout << queen << endl;

Local Search Algorithms
sic Algorithms

Resumé: Constraint-Based Local Searchs s

Constraint-Based Local Search = Modelling + Search

28

Basic Algorithms

Resumé: Local Search Modelling

Optimization problem (decision problems — optimization):

» Parameters

» Variables and Solution Representation
implicit constraints

» Soft constraint violations

» Evaluation function: soft constraints + objective function

Differentiable objects:

» Neighborhoods

» Delta evaluations
Invariants defined by one-way constraints

29

Local Search Algorithms

Resumé: Local Search Algorithms Basic Algorithms

A theoretical framework

For given problem instance 7:

1.

search space S, solution representation: variables + implicit constraints
. evaluation function f; : S — R, soft constraints + objective

. neighborhood relation A/, C S, x S,

. set of memory states M,

initialization function init : () — S, x M)

step function step : S, x M, — S, x M,

. termination predicate terminate : S; x M, — {T, L}

Computational analysis on each of these components is necessay!

30

Local Search Algorithms
Basic Algorithms

Resumé: Local Search Algorithms Local Search Revisited

» Random Walk

v

First/Random Improvement

v

Best Improvement

Min Conflict Heuristic

v

The step is the component that changes. It is also called: pivoting rule (for
allusion to the simplex for LP)

31

Basic Algorithms
Examples: TSP :

Random-order first improvement for the TSP

» Given: TSP instance G with vertices v, vo, ..., v,.

» Search space: Hamiltonian cycles in G;
» Neighborhood relation /V: standard 2-exchange neighborhood

> Initialization:

search position := fixed canonical tour < v, va, ..., vy, v1 >
“mask” P := random permutation of {1,2,... n}

» Search steps: determined using first improvement
w.r.t. f(s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

» Termination: when no improving search step possible
(local minimum)

Local Search Algorithms

Basic Algorithms
Exa m ples: TS P Local Seareh Revisited

Iterative Improvement for TSP

TSP-2opt-first(s)
input: an initial candidate tour s € S(€)
output: a local optimum s € S,

fori=1ton—1do
for j=i+1tondo
if P[i]+1>nor P[j]+1>n then continue ;
if P[i]+ 1= P[j] or P[j]+ 1= P[i] then continue;

Ay = d(wpp,meyy) + d(Tppier, TRy 1)+
—d(mppiy, ppi+1) — d(7py), TR1)
if Ajj <0 then

| UpdateTour(s, P[i], P[j])

is it really?

33

Local Search Algorithms
Basic Algorithms

Exa m ples Local Search Revisited

Iterative Improvement for TSP

TSP-2o0pt-first(s)
input: an initial candidate tour s € S(€)
output: a local optimum s € S,

Foundlmprovement:=TRUE;

while Foundlmprovement do

FoundImprovement:=FALSE;

fori=1ton—1do

forj=i+1tondo

if P[i]+1>norP[j]+ 1> n then continue;

if P[i]+ 1= P[j]or P[j]+ 1= P|[i] then continue;

A = d(mwpp), mey) + d(Tppie1, TRp1)+
—d(mppi), Tpii+1) — d(Tp), TR 1)
if Aj; <0 then

UpdateTour(s, P[i], P[j])
Foundlmprovement=TRUE

34

Outline

3. Local Search Revisited

Local Search Algorithms
Basic Algorithms
Local Search Revisited

35

Outline

3. Local Search Revisited
Components

Local Search Algorithms
Basic Algorithms
Local Search Revisited

36

. Local Search Algorithms
LS Algorithm Components Basic Algorithms

Search space
Search Space
Solution representations defined by the variables and the implicit constraints:

> permutations (implicit: alldiffrerent)

> linear (scheduling problems)
» circular (traveling salesman problem)

> arrays (implicit: assign exactly one, assignment problems: GCP)

> sets (implicit: disjoint sets, partition problems: graph partitioning, max
indep. set)

~ Multiple viewpoints are useful also in local search!

37

LS Algorithm Components

Evaluation function

Evaluation (or cost) function:

» function £, : S, — Q that maps candidate solutions of

Local Search Algorithms
Basic Algorithms
Local Search Revisited

a given problem instance 7 onto rational numbers (most often integer),

such that global optima correspond to solutions of 7;

> used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

» Evaluation function: part of LS algorithm.

» Objective function: integral part of optimization problem.

» Some LS methods use evaluation functions different from given objective

function (e.g., guided local search).

38

Constrained Optimization Problems teciscrchrevsiced

Constrained Optimization Problems exhibit two issues:

> feasibility
eg, treveling salesman problem with time windows: customers must be
visited within their time window.

> optimization
minimize the total tour.

How to combine them in local search?

> sequence of feasibility problems
» staying in the space of feasible candidate solutions

» considering feasible and infeasible configurations

39

Constraint-based local search B e e
From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

>

decomposition-based violations
number of violated constraints, eg: alldiff

variable-based violations
min number of variables that must be changed to satisfy c.

value-based violations
for constraints on number of occurences of values

arithmetic violations

combinations of these

40

Local Search Algorithms

Constraint-based local search Basic Algorithms

Local Search Revisited
From Van Hentenryck and Michel

Combinatorial constraints

> alldiff(xy,...,%,):
Let a be an assignment with values V = {a(x1),...,a(x,)} and
¢, = #2.(v, x) be the number of occurrences of v in a.
Possible definitions for violations are:

viol = 37 .\, I(max{c, — 1,0} > 0) value-based

viol = max,cv max{c, — 1,0} value-based

viol = >~ ., max{c, — 1,0} value-based

variables with same value, variable-based, here leads to same
definitions as previous three

vy VvV VY

Arithmetic constraints
> [< r~>viol = max{/ —r,0}
> [=r~viol=|/—r]|

> | #r~viol =1if | = r, 0 otherwise

41

	Local Search Algorithms
	Basic Algorithms
	Local Search Revisited
	Components

