
DM841
DISCRETE OPTIMIZATION

Part 2 – Heuristics
Satisfiability

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



SATOutline

1. SAT
Mathematical Programming
Constraint Programming
Dedicated Backtracking

2



SATSAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3



SATSAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3



SATMotivation

I From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

I Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence
Checking, etc.

I SAT used to solve many other problems!

4



SATSAT Problem
Satisfiability problem in propositional logic

Definitions:

I Formula in propositional logic: well-formed string that may contain
I propositional variables x1, x2, . . . , xn;
I truth values > (‘true’), ⊥ (‘false’);
I operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
I parentheses (for operator nesting).

I Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

I Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.

5



SAT

SAT Problem (decision problem, search variant):
I Given: Formula F in propositional logic
I Task: Find an assignment of truth values to variables in F that renders

F true, or decide that no such assignment exists.

SAT: A simple example
I Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

I Task: Find an assignment of truth values to variables x1, x2 that renders
F true, or decide that no such assignment exists.

6



SAT

Definitions:

I A formula is in conjunctive normal form (CNF) iff it is of the form

m∧
i=1

ki∨
j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm )

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . . ∨ liki ) are called clauses.

I A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i , ki = k).

I In many cases, the restriction of SAT to CNF formulae
is considered.

I For every propositional formula, there is an equivalent formula in 3-CNF.

7



SAT

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

I F is in CNF.
I Is F satisfiable?

Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

8



SATFrom Propositional Logic to SAT

Propositional logic: operators: ¬P,P ∧ Q,P ∨ Q,P =⇒ Q,P ⇔ Q

To conjunctive normal form:

I replace α⇔ with (α =⇒ β) ∧ (β =⇒ α)

I replace α =⇒ β with ¬α ∨ β

I ¬ must appear only in literals, hence move ¬ inwards

I distributive law for ∨ over ∧:

α ∨ (β ∧ γ) infers that (α ∨ β) ∧ (α ∨ γ)

9



SATSpecial Cases

Not all instances are hard:

I Definite clauses: exactly one literal in the clause is positive. Eg:

¬β ∨ ¬γ ∨ α

I Horn clauses: at most one literal is positive.

Easy interpretation: α ∧ β =⇒ γ infers that ¬α ∨ ¬β ∨ γ

Inference is easy by forward checking, linear time

10



SATMax SAT

Definition ((Maximum) K -Satisfiability (SAT))

Input: A set X of variables, a collection C of disjunctive clauses of at most k
literals, where a literal is a variable or a negated variable in X .
k is a constant, k > 2.
Task: A truth assignment for X or a truth assignment that maximizes the
number of clauses satisfied.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

11



SATOutline

1. SAT
Mathematical Programming
Constraint Programming
Dedicated Backtracking

12



SATMathematical Programming Models

I How to model an optimization problem

I choose some decision variables
they typically encode the result we are interested into

I express the problem constraints in terms of these variables
they specify what the solutions to the problem are

I express the objective function
the objective function specifies the quality of each solution

I The result is an optimization model

I It is a declarative formulation
specify the “what”, not the “how”

I There may be many ways to model an optimization problem

13



SATIP model

Standard IP formulation: Let xl be a 0–1 variable equal to 1 whenever the
literal l takes value true and 0 otherwise.
Let c+ be the set of literals in clause c ∈ C that appear as positive and c−

the set of variables that appear as negated.

min 1

s.t.
∑
l∈c+

xl +
∑
l∈c−

(1− xl) = 1, ∀c ∈ C ,

xl ∈ {0, 1}, ∀l ∈ L

14



SATOutline

1. SAT
Mathematical Programming
Constraint Programming
Dedicated Backtracking

15



SATGecode Model

From Gecode examples:� �
BoolVarArray x = BoolVarArray(∗this, nvariables, 0, 1);

for (int c=0; c < nclauses; c++) {
// Create positive BoolVarArgs
BoolVarArgs positives(clauses[c].pos.size());
for (int i=clauses[c].pos.size(); i−−;)

positives[i] = x[clauses[c].pos[i]];

BoolVarArgs negatives(clauses[c].neg.size());
for (int i=clauses[c].neg.size(); i−−;)

negatives[i] = x[clauses[c].neg[i]];

// Post propagators
clause(∗this, BOT_OR, positives, negatives, 1);

}

branch(∗this, x, INT_VAR_NONE(), INT_VAL_MIN());� �

16



SATOutline

1. SAT
Mathematical Programming
Constraint Programming
Dedicated Backtracking

17



SATDPLL algorithm

Davis, Putam, Logenmann & Loveland (DPLL) algorithm is a recursive
depth-first enumeration of possible models with the following elements:

1. Early termination:
a clause is true if any of its literals are true
a sentence is false if any of its clauses are false, which occurs when all its
literals are false

2. Pure literal heuristic:
pure literal is one that appears with same sign everywhere.
it can be assigned so that it makes the clauses true. Clauses already true
can be ignored.

3. Unit clause heuristic
consider first unit clauses with just one literal or all literal but one
already assigned. Generates cascade effect (forward chaining)

18



SATDPLL algorithm

Function DPLL(C , L,M):
Data: C set of clauses; L set of literals; M model;
Result: true or false
if every clause in C is true in M then return true;
if some clause in C is false in M then return false;
(l , val)←FindPureLiteral(L,C ,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
(l , val)←FindUnitClause(L,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
l ←First(L); R ←Rest(L);
return DPLL(C ,R,M ∪ {l = true}) or

DPLL(C ,R,M ∪ {l = false})

19



SATSpeedups

I Component analysis to find
separable problems

I Intelligent backtracking
I Random restarts
I Clever indexing (data structures)
I Variable value ordering

20



SATVariable selection heuristics

I Degree

I Based on the occurrences in the (reduced) formula

I Maximal Occurrence in clauses of Minimal Size (MOMS, Jeroslow-Wang)

I Variable State Independent Decaying Sum (VSIDS)

I original idea (zChaff): for each conflict, increase the score of involved
variables by 1, half all scores each 256 conflicts [MoskewiczMZZM2001]
(similar to accumulated failure count in Gecode)

I improvement (MiniSAT): for each conflict, increase the score of involved
variables by δ and increase δ := 1.05δ [EenSörensson2003]
(similar to accumulated failure count in Gecode)

22



SATValue selection heuristics

I Based on the occurrences in the (reduced) formula

I examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal
Size (MOMS), look-aheads

23



SATSummary

1. SAT
Mathematical Programming
Constraint Programming
Dedicated Backtracking

24


	SAT
	Mathematical Programming
	Constraint Programming
	Dedicated Backtracking


