DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini lektor, IMADA

www.imada.sdu.dk/~marco/DM841

Course Formalities

Prerequisites:	 Programming (DM502, DM503, DM550) Algorithms and data structures (DM507) Linear and Integer Programming (DM559, DM545, DM554) 			
Semester:	3rd (but challenging), 5th, Master			
Credits:	10 ECTS			
Language:	English and Danish			
Classes:	intro: $2h \times 24$; training: $2h \times 20$			
Material:	slides + articles + lecture notes + starting code			

Problems with Constraints

Social Golfer Problem

- ▶ 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
- wish to play in groups of 3 players in 4 days
- such that no golfer plays in the same group with any other golfer more than just once.

Is it possible?

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

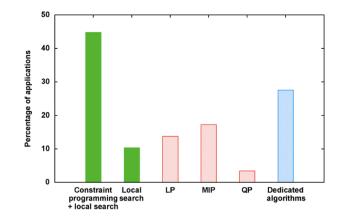
Solution Paradigms

- Dedicated algorithms (eg.: enumeration, branch and bound, dynamic programming)
- Integer Linear Programming (DM559/DM545)
- Constraint Programming:

Local Search & Metaheuristics

Others (SAT, etc)

Solution Paradigms


- Dedicated algorithms (eg.: enumeration, branch and bound, dynamic programming)
- Integer Linear Programming (DM559/DM545)
- Constraint Programming:

representation (modeling) + reasoning (search + propagation)

- Local Search & Metaheuristics
 representation (modeling) + reasoning (search)
- Others (SAT, etc)

Applications

Distribution of technology used at Google for optimization applications developed by the operations research team

[Slide presented by Laurent Perron on OR-Tools at CP2013]

Modeling

Modelling in MIP Modelling in CP

Modeling

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Golfers

Alternative viewpoint Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Constraint Programming Modeling

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Golfers

Alternative viewpoint Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Integer variables:

 $X_{p,d}$ variable whose value is from the domain $\{1, 2, 3\}$

Constraint Programming Modeling

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Golfers

Alternative viewpoint Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{ 2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Integer variables:

 $X_{p,d}$ variable whose value is from the domain $\{1, 2, 3\}$

Constraints:

- C1: each group has exactly groupSize players
- C2: each pair of players only meets once

Model with Integer Variables

```
players = 9;
groupSize = 3;
days = 4;
groups = players/groupSize;
assign = m.intvars(players * days, 0, groups-1)
schedule = Matrix(players, days, assign)
\# C1: Each group has exactly groupSize players
for d in range(days):
   m.count(schedule.col(d), [groupSize, groupSize, groupSize]);
\# C2: Each pair of players only meets once
p_pairs = [(a,b) for a in range(players) for b in range(players) if p1<p2]
d_pairs = [(a,b) for a in range(days) for b in range(days) if d1<d2]
for (p1,p2) in p_pairs:
   for (d1,d2) in d_pairs:
      b1 = m.boolvar()
      b_2 = m.boolvar()
      m.rel(assign(p1,d1), IRT_EQ, assign(p2,d1), b1)
      m.rel(assign(p1,d2), IRT_EQ, assign(p2,d2), b2)
      m.linear([b1,b2], IRT_LQ, 1)
```

m.branch(assign, INT_VAL_MIN_MIN, INT_VAL_SPLIT_MIN)

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012		
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1			
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

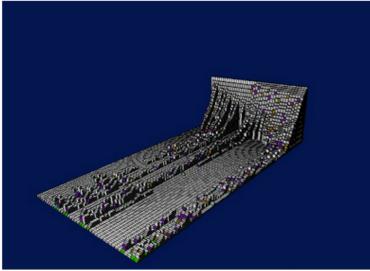
	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0		
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
- K	Duyo	Duyi	Duyz	Duy 5
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0	1	
Day 2			
Day 3			


	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	2	{1,2,3}	{1,2,3}
Golfer 2	1	{3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	036	147	258
Day 2	048	156	237
Day 3	057	138	246

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1		
Golfer 1	1	2		
Golfer 2	1	{3}		
Golfer 3	2			
Golfer 4	2			
Golfer 5	2			
Golfer 6	3			
Golfer 7	3			
Golfer 8	3			

Effect of constraint propagation on the domains of variables during search in a placement problem.

Local Search

Modeling

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0 4 6	1 3 7	258
Day 2	0 4 8	156	2 3 7
Day 3	057	138	246

- Variables = solution representation, tentative solution
- Constraints:
 - implicit
 - soft
- evaluation function

Local Search

Solution: Trial and Error

	Group 1	Group 2	Group 3
Day 0	012	345	<mark>6 7 8</mark>
Day 1	0 4 6	1 3 7	258
Day 2	0 4 8	156	2 3 7
Day 3	057	138	246

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for theoretical guarantees on running time and approximation quality).

Contents: Constraint Programming

- Modelling and Applications Integer variables, set variables, float variables, constraints
- Principles
 Consistency levels
- Filtering Algorithms Alldifferent, cardinality, regular expressions, etc.
- Search: Backtracking, Strategies
- Symmetry Breaking
- Restart Techniques
- Programming Gecode (C++)

Contents: Heuristics

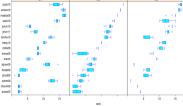
- Construction Heuristics
- Local Search
- Metaheuristics
 - Simulated Annealing
 - Iterated Local Search
 - Tabu Search
 - Variable Neighborhood Search
 - Evolutionary Algorithms
 - Ant Colony Optimization
- Programming
 EasyLocal (C++)

Aims & Contents

- modeling problems with constraint programming
- design heuristic algorithms
- implement the algorithms
- assess the programs
- describe with appropriate language
- look at different problems

Assessment (10 ECTS)

5 obligatory assignments:


- individual
- deliverables: program + short written report
- graded with external censor, final grade given by weighted average

Graph Coloring Contest - Final Assignment

Welcome! In this assignment you have to upload your program as a tar gr emit executable file. Read the assignment description for details on the task and organization c emit

Browse... No file selected.

Send File

View Final Results

DM841 (10 ECTS - autumn semester)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini lektor, IMADA

www.imada.sdu.dk/~marco/DM841