DM559/DM545 -- Linear and Integer Programming

Schedule

DM559 (mitsdu)

View Section H1
Week56789101112131415161718192021
Man, 08-10TE (H1)
(U143)
TE (H1)
(U143)
TE (H1)
(U143)
TE (H1)
(U143)
TE (H1)
(U143)
I (Fælles)
(U55)
Man, 10-12I (Fælles)
(U91)
I (Fælles)
(U20)
I (Fælles)
(U140)
I (Fælles)
(U140)
Tir, 12-14TE (H1)
(U64)
Ons, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
Ons, 14-16I (Fælles)
(U166)
I (Fælles)
(U55)
TE (H1)
(U154)
TE (H1)
(U154)
TE (H1)
(U154)
TE (H1)
(U154)
Tor, 08-10I (Fælles)
(U23)
I (Fælles)
(U23)
Tor, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
Tor, 12-14TE (H1)
(U143)
Tor, 14-16TE (H1)
(U154)
I (Fælles)
(U140)
Fre, 10-12I (Fælles)
(U173)
I (Fælles)
(U43)
TL (H1)
(IMADA ComputerLab)
TL (H1)
(IMADA ComputerLab)
TE (H1)
(U143)
View Section H2
Week56789101112131415161718192021
Man, 08-10I (Fælles)
(U55)
Man, 10-12I (Fælles)
(U91)
I (Fælles)
(U20)
I (Fælles)
(U140)
I (Fælles)
(U140)
Tir, 12-14TE (H1)
(U64)
Tir, 14-16TE (H2)
(U141)
Ons, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
Ons, 14-16I (Fælles)
(U166)
I (Fælles)
(U55)
TL (H2)
(IMADA ComputerLab)
TE (H2)
(U154)
Tor, 08-10I (Fælles)
(U23)
I (Fælles)
(U23)
Tor, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
Tor, 12-14TE (H2)
(U31)
TE (H2)
(U17)
TE (H2)
(U154)
TE (H2)
(U17)
TE (H2)
(U64)
TE (H2)
(U143)
TE (H2)
(U143)
Tor, 14-16TE (H2)
(U154)
I (Fælles)
(U140)
Fre, 10-12I (Fælles)
(U173)
I (Fælles)
(U43)
TL (H2)
(IMADA ComputerLab)
TE (H2)
(U144)
Fre, 12-14TE (H2)
(U145)

DM545 (mitsdu)

View Section M1
Week12131415161718192021
Man, 08-10I (Fælles)
(U55)
Man, 10-12I (Fælles)
(U140)
I (Fælles)
(U140)
Tir, 12-14TE (M1)
(U64)
TE (M1)
(U64)
TE (M1)
(U64)
TE (M1)
(U64)
TE (M1)
(U64)
TE (M1)
(U64)
TE (M1)
(U64)
Ons, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
TE (M1)
(U8)
Ons, 14-16I (Fælles)
(U55)
Tor, 08-10TE (M1)
(U8)
Tor, 10-12I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
I (Fælles)
(U23)
Tor, 14-16I (Fælles)
(U140)
Fre, 08-10TL (M1)
(IMADA ComputerLab)
TL (M1)
(IMADA ComputerLab)

Linear Algebra Part (DM559)

Introductory classes

# Date Topic and Slides Literature and Assignments
1,2 08.02 Introduction and Preliminaries. Systems of Linear Equations [AR s 1.1-1.2] or [AH c 2] or [Le s 1.1-1.2, 1.5]
3 09.02 Matrix Operations [AR s 1.3-1.4] or [AH s 1.1-1.9] or [Le s 1.3-1.4]
4 14.02 Elementary Matrices, Determinants, Matrix Inverse, more on Linear Systems. (LU + iterative met.) [AR s 1.4-1.7, c 2] or [AH c 3] or [Le s 1.5, 2.1-2.3]
  15.02 Linear Algebra in Python. (Further elements + Sparse matrices) Exercises (sol)
5 19,22.02 Geometric Insight [AR s 3.1-3.4] or [AH s 1.9-1.14]
[ Assignment 0.1 ] [ sol ] [ cmnts ]
6 01.03 Rank, Range [AR s 4.7-4.8] or [AH c 4] or [Le s 3.1,3.2,3.6]
7 05.03 Vector Spaces, Linear Independency, Bases and Dimension [AR s 4.1-4.5] or [AH c 5,6] or [Le s 3.3,3.4,3.6]
8 08.03 Change of Basis [AR 4.6] or [AH c7] or [Le 4.1,4.2,3.5]
9 12.03 Linear Transformations [AR 4.9-4.10] or [AH c 7] or [Le s 4.3]
10 15.03 Diagonalization: Eigenvalues and Eigenvectors [AR 5.1,5.2] or [AH c 8,9] or [s 6.1,6.3]
[ Assignment 0.2 ] [ sol ]

Training classes

# Week Topic Exercises Sol
1 7 Systems of Linear Equations Sheet1 sol
2 8 Matrix Operations Sheet2 sol
3 9 Determinants, Inverse, Geometric Insight Sheet3 (numpy) sol; python
4 10 Geometric Insight, Python, Applications Sheet4 sol
5 11 Vector spaces, Bases Sheet5 sol
6 12 Linear Tranformations, Diagonalization Sheet6 sol

Linear and Integer Programming Part (DM545/DM559)

Introductory classes

# Date Topics Slides Literature and Assignments
1 19.03 Introduction - Linear Programming, Notation [Slides] [ Notes ]
    Resource allocation in factory planning. Diet problem.   [L1,L2] [HL ch 1,2,3]
    Linear programming problems and geometrical interpretation.   [MG ch 1,2, Appendix] [L3]
2 22.03 Linear Programming, towards the Simplex Method [Slides] [ Notes ]
    History. Fourier & Moutzkin elimination   [Da] [ wiki ]
    Notation: polyhedral analysis   [MG ch 4] [HL sc 5.1] [L5]
    Linear programming theory, Fundamental theorem   [L4,L6]
    Gaussian Elimination   [ wiki ] [L4]
3 04.04 Simplex Method [Slides] [ Notes ]
    Simplex method, tableaux and dictionaries   [MG ch 5] [HL sc 4.1-4.4]
4 05.04 Exception Handling and Initialization [Slides] [ Notes ]
    Exception handling and degeneracies in simplex method. Pivot rules   [MG ch 5], [HL sc 4.5]
5a 11.04 Duality Derivation: [Slides] [ Notes ]
    Bounding and multipliers approach   [MG sc 6.1-6.3] [HL sc 6.1-6.4]
5b 12.04 Duality Theory:    
    Weak/strong duality theorems and complementary slackness theorem   [ Assignment 1.1 ] [ cmts ] [ sol ]
6 18.04 More on Duality [Slides] [ Notes ]
    Geometric Interpretation, Duality by Lagrangian relaxation   [Ch ch 10] [CL ch 2]
    Dual Simplex, Sensitivity Analysis   [Va sc 7.1] [HL sc 7.1, 4.7]
7 19.04 Revised Simplex Method [Slides] [ Notes ]
        [HL ch 5] [Va 6.1-6.5]
        [ Ch ch 7 ]
8 23.04 Farkas Lemma. Integer Programming - Modeling Examples [Slides] [MG sc 6.4, 6.6, ch 3] [Wo ch 1]
9 25.04 Integer Programming - More on Modeling, Formulations [Slides] [Wi ch 9.1-9.5] [Wo ch 2] [L8]
10 02.05 Relaxations, Well Solved Problems [Slides] [Wo sec. 3.2-3.5] [CL ch 7]
    Convex hull description, Total unimodular matrices    
11 03.05 Network Flows [Slides] [CL ch 4,6,7]
11b 07.05 Network Flows (slides lec 11)   [ Notes ]
    Min cost flow, Maximum flow, Shortest path, multicommodity flow   [AOM sec 1.2]
    Duality in network flows   [ Assignment 1.2 ] [ sol ]
12 09.05 Cutting Planes [Slides] [Wo ch 7]
    Valid Inequalities. Chvatal Gomory cuts.    
    Cutting plane algorithm. Gomory's fractional cutting plane algorithm    
13 16.05 Branch and Bound [Slides] [Wo ch 8.1-8.6]
14 17.05 More on Modeling and MathProg in Spreadsheets [Slides] [mincost.xlsx]
15 24.05 Traveling Salesman Problem   [L8] [ Sol to assign. 1.2 ]

Training classes

# Week Topic Exercises Sol
0 12 Python and Linear Algebra Review (only for DM545) Sheet0 sol
1 14 LP Modeling Sheet1 sol
2 14 LP Software (in IMADA Computer Lab!) Sheet2  
3 15 Simplex Sheet3 sol
4 16 Exception Handling Sheet4 sol
5 16 LP Modeling (Computer Lab) Sheet5 sol
6 17 Dual Simplex and Revised Simplex Sheet6 sol
7 18 IP Modeling Sheet7 sol
8 19 More on IP modeling Sheet8 sol
9 20 Network Flows Sheet9 sol
10 21 Gomory Cuts and Branch and Bound Sheet10 sol

Literature

Linear Algebra Part:

Linear and Integer Programming Part:

Assessment

  • A number of obligatory assignments during the course with pass/fail assessment by the teacher. The assignments are practice oriented and must be passed to attend the written exam.
  • Written exam, 4 hours, Danish 7 grade scale, external examiner.

    Date: June 4, 2018

  • Instructions for the written exam

Reexam

Past Exams

Course Evaluation

Author: Marco Chiarandini

Created: 2018-08-24 Fri 08:14

Validate