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DM559/DM545 – Linear and Integer Programming
Obligatory Assignment 1.1, Spring 2018
Solution Contains Solutions!
Preface

Submission deadline:
Friday, April 27, 2018 at noon

The accomplishment of the following assignment is required for the admission to the final writtenexam.
You have to hand in a report in PDF format containing your answers. The main part of these answersis the description of the models you have used. A proper format, language and mathematical notationas we have learned in class is expected.
You must compile your answers using the LaTeX template provided [tex; pdf]. Those compiling theirdocuments in Word (a choice that is anyway discouraged), should try to stay as close as possibleto the template provided. It is very important that you use the structure provided with the cleardistinction on the parts of your answers. It is not needed to write a long introduction where yourepharse the problem description: it is enough to address directly only the parts required. You canwrite either in Danish or in English.
You must include in the document the source code of the scripts you have implemented. For thoseusing LaTeX an environment for reporting code is made available in the template. The code mustbe concise and readable! Source code will however not be checked if the description of the modelsis not clear and understandable. In other terms, the main focus has to be on the description andmathematical model.
The submission is electronic via:

http://valkyrien.imada.sdu.dk/milpApp/

Make sure you have written your name in the first page of the report.
The assignment has to be carried out individually and exchange of solutions is not allowed. However,since the goal of this assignment is to gain experience working with linear programming rather thanassessing your preparation, if you are in doubt about how to proceed, it is allowed to consult orallywith peers.
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Portfolio Selection

Every investor, from the individual to the professional fund manager, must decide on an appropriatemix of assets to include in his or her investment portfolio. The portfolio selection problem consistsin deciding, given a sum of money, how much to invest amongst a portfolio of financial securities.The approach that is due to Markowitz (1952) [Mar52] seeks to minimize the risk associated withthe investment while realizing a target expected return. By varying the target, one can compute an“efficient frontier”, which defines the optimal portfolio for a given expected return.
Let j be an asset from a set of N potential investments, and let Rj denote the random variableindicating the return on (one krone) investment of j, j = 1, . . . , N in the next time period of investment.
A portfolio is the fraction of investment to put in each asset in a time period. Hence, a portfolio isdetermined by a collection of nonnegative numbers xj , j = 1, . . . , N , that sum to one. The return inthe next time period that one would obtain from the investment in a portfolio is

R =∑
j
xjRj

and the expected return, henceforth reward :1
E [R ] =∑

j
xjE [Rj ]

If the reward was the only issue, then the decision would be trivial: simply put everything in theinvestment with the highest expected return. But unfortunately, investments with high expectedreturn typically also carry a high level of risk. That is, even though they are expected to do very wellin the long run, they also tend to be erratic in the short term.
There are many ways to define risk. One way is to define the risk associated with an asset as
xj (Rj − E [Rj ]) and then for the whole portfolio as the mean of the absolute deviation from the mean(MAD):

MAD = E
[
|R − E [R ]|] = E

∣∣∣∣∣∣∑j xj (Rj − E [Rj ])
∣∣∣∣∣∣


Solving this problem requires knowledge about the joint distribution of the Rj ’s. This distribution isnot known theoretically but it can be estimated looking at historical data. For example, Figure 1shows monthly returns over a two-year period of a Stock Exchange index and three assets. Let rjtdenote the historical return on investment j from month t to month t + 1 as shown in the tables ofFigure 1.2 One way to estimate the mean E [Rj ] is simply to take the average of the historical returns:
R̂j = 1

T

T∑
t=1 rjt .Hence, the estimates for reward E [R ] and risk MAD are:

R̂ = N∑
j=1 xj R̂j (1)

M̂AD = 1
T

T∑
t=1
∣∣∣∣∣∣

N∑
j=1 xj

(
rjt − R̂j

)∣∣∣∣∣∣
 (2)

1We use the symbol E to denote expected value, which means that, if R is a random variable that takes values R1, R2, . . . , RTwith equal probability over T time periods, then
E [R ] = 1

T

T∑
t=1 Rt .2Note that we use upper case letter to indicate random variables and lower case letter to indicate their sampled outcome.
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cjt A B C1 19.33 8.52 11.842 19.46 9.89 12.283 19.75 9.97 12.344 19.21 9.75 12.125 19.83 10.34 11.846 19.54 9.87 11.947 19.25 10.09 11.698 18.83 9.63 11.569 20.04 9.23 11.6210 19.96 10.43 11.8411 19.75 9.19 12.0012 19.12 9.38 12.4713 18.91 8.92 14.0014 19.79 8.58 14.2515 19.83 9.55 15.03
rjt A B C1 0.01 0.15 0.042 0.01 0.01 0.003 -0.03 -0.02 -0.024 0.03 0.06 -0.025 -0.01 -0.05 0.016 -0.01 0.02 -0.027 -0.02 -0.05 -0.018 0.06 -0.04 0.019 -0.00 0.12 0.0210 -0.01 -0.13 0.0111 -0.03 0.02 0.0412 -0.01 -0.05 0.1213 0.05 -0.04 0.0214 0.00 0.11 0.0515 0.04 0.02 0.12

Figure 1: The trend of the Stock Exchange index (top), the price (middle) and the returns (bottom)of three investments. The return rjt in a period t is calculated as log(cj,t−1)− log(cj,t) where cjt is thecost of investment j . (For an explanation of why log returns see: https://quantivity.wordpress.
com/2011/02/21/why-log-returns/.) A snapshot of the data for three investments A, B, C in thefirst 15 months is given in the tables on the right.
The portfolio selection problem consists in finding an allocation of assets maximizing the rewardwhile at the same time not incurring in excessive risk. This is a multi-objective situation in which oneis confronted with two (or more) competing objectives and there is not a single solution that satisfiesthem all.
There are several ways to approach multi-objective optimization problems. One approach is scalar-ization. It consists in defining weights for the objectives and solving only once a single objectiveproblem made by the weighted sum of the objectives. Another approach is ordering lexicographicallythe objectives and solving a series of single objective problems where objectives of the previous prob-lems become constraints in the next one. These two methods require a priori knowledge, that is, oneshould be able to discriminate the objectives indicating their relative importance.
A different approach assumes no a priori knowledge. In this case, we search a spectrum of optimalsolutions that are indifferent with each other. These solutions compose the set of Pareto optimalsolutions. More formally, let f1(x), f2(x), . . . , f` (x), fi(x) : RN → R, i = 1, . . . , ` , be the ` objectivefunctions of the problem that map the points of the region of feasible solutions to the objective space.For ` = 2, the situation is illustrated in Figure 2. For a minimization problem, we then say that afeasible solution x is dominated if there exists a feasible solution x′, x′ 6= x such that fi(x′) ≤ fi(x)for all i = 1, . . . , ` and there is at least one i for which fi(x′) < fi(x). A feasible solution x is Pareto
optimal if it is not dominated by any other feasible solution. In Figure 2, Pareto optimal solutionsare those solutions of the feasible region mapped on the bold frontier in the objective space. Thefrontier in the objective space determined by Pareto optimal solutions is called efficient frontier.
There are different methods to collect the solutions in the Pareto optimal set. One method usesagain the scalarization approach but varying the weights throughout and solving a single optimiza-
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Figure 2: Solution space (left) and objective space (right)
tion problem for each set of weights proposed. Another method, the ε-constrained method, optimizesone of the objectives, while using the others as constraints. It proceeds by repeatedly solving sin-gle optimization problems varying the ε value that is imposed as bound in the objectives used asconstraints.
The portfolio selection problem is a bi-objective problem in which we are interested in determiningthe set of Pareto optimal allocations and the efficient frontier with respect to the two criteria: riskand reward.
We will use the ε-constraint method for addressing the multi-objective issue, resolving from scratcha new optimization problem every time ε is updated. More clever ways exist, avoiding to resolvethe problem at each change of ε, but for the scope of this assignment this method is well suited.More specifically, in the following, you must treat the reward as the objective to put in the constraintlist and the risk as the objective to minimize. The constraint to impose on the reward is that itmust be larger than a value B, determined by ε in the following way: B = a + ε(b − a) where
a = max{0,minj R̂j} and b = maxj R̂j .
Your Tasks

1. Formulate the portfolio selection problem as a linear programming problem and report the modelin mathematical notation. Be precise in your formulation: first, introduce the notation distin-guishing parameters and variables, then, write the mathematical model, and, finally, explaineach line of the model.Further, give the number of variables and constraints that the model has as a function of N and
T (note that reporting the numbers indicated by Gurobi is not a correct answer to this question,in that, you have to give the general form as function of N and T ).Finally, state precisely how many assets at most the optimal solution will indicate as worthbuying.
SolutionA presentation of the notation would be appropriate here. However, the notation is the same asused in the description, hence I skip it. It may suffice here to state that xj ∈ [0, 1], j = 1..N arethe variables and all others are given parameters. A non-trivial aspect of the model requestedis handling the absolute value in the definition of MAD. We have seen in class that the absolutevalue is not a linear function. We have also seen how to handle it by introducing auxiliaryvariables. Here, we introduce a variable yt ≥ 0 for each period t.
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min 1
T

T∑
t=1 yt (3)

s.t. N∑
j=1 xj = 1 (4)
N∑
j=1 xj (rj,t − E [rj ]) ≤ yt ∀t = 1..T (5)
N∑
j=1 xj (E [rj ]− rj,t) ≤ yt ∀t = 1..T (6)
N∑
j=1 xjE [rj ] ≥ B (7)
0 ≤ xj ≤ 1 ∀j = 1..N (8)
yt ≥ 0 ∀t = 1..T (9)

Constraint (4) ensures the satisfaction of the budget. Constraints (5) and (6) deal with theabsolute value, forcing yt to be equal to the positive value of the left hand side. Note, that yt isforce to be equal and not simply larger because of the objective function that while minimizingthe total risk, minimizes all values yt . Finally, constraint (7) enforces the reward to be largeror equal to the value determined by the threshold ε.As a function of T and N , there are N+T original variables and 2T +2 constraints (4)-(7) plus
N further constraints from the upper bounds of xj . There are 2T + 1 +N slack variables; hencethe total number of variables in the simplex is N + T + 2T + 1 + N . From the theory of thesimplex and the size of the bases, we known that at most 2T + 1 +N variables (including slackvariables) can be strictly larger than zero.2. Using the template provided portfolio.py, implement the model in Gurobi Python and determinethe efficient frontier for the data made available in the file indtrack6.dat for varying values of
ε. The Python script portfolio.py implements the ε method providing a function that solvesan LP model (the one you have defined) for different values of the argument parameter ε. Thecode produces a plot of the frontier.Report and comment relevant information from the run of Gurobi.Comment the results described by the plot ensuring that they make sense. Note that, contraryto Figure 2 where we were minimizing both objective functions, here want to minimize the riskwhile we want to maximize the return; hence the frontier will follow a different pattern than theone of Figure 2. Moreover, state how many assets the model will indicate to buy for varyingvalues of B.
SolutionAn implementation in python is given here.

def solve(data, epsilon):

m = Model("portfolio")

m.setParam(GRB.param.Method, 0)

B = data.min_r + (epsilon/100)*(data.max_r-data.min_r);

### Write here your models

x={}

for j in data.assets:
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x[j] = m.addVar(lb=0.0,ub=1.0, obj=0.0, vtype=GRB.CONTINUOUS, name="x_%d" %

j)

y={}

for t in data.times:

y[t] = m.addVar(lb=0.0,ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS, name

="y_%d " % t)

m.update()

m.setObjective(quicksum(y[t] for t in data.times), GRB.MINIMIZE)

m.addConstr(quicksum(x[j] for j in data.assets)==1,"budget")

for t in data.times:

m.addConstr(quicksum(x[j]*(data.r[j,t]-data.av_r[j]) for j in data.assets)

<= y[t], "abs1_%d" % t )

m.addConstr(quicksum(x[j]*(data.av_r[j]-data.r[j,t]) for j in data.assets)

<= y[t], "abs2_%d" % t )

m.addConstr(quicksum( x[j]*data.av_r[j] for j in data.assets) >= B);

m.optimize()

count = 0

for u in x:

if x[u].x > 0.0001: count +=1

print "#vars > 0: ",count

return m.objVal, B

The frontier is in Figure 2. We see that, as expected, the larger is the value of the MAD estimate,the higher is the expected reward. The plot represents the trade off between risk and reward.Solutions in the frontier are indifferent. Printing the number of variables strictly larger than 0for ε from 0 to 90 we obtain:
#vars > 0: 236

#vars > 0: 227

#vars > 0: 182

#vars > 0: 142

#vars > 0: 104

#vars > 0: 70

#vars > 0: 49

#vars > 0: 26

#vars > 0: 14

For N = 457 and T = 290, this means that also many slack variables will be strictly largerthan zero.3. The following two alternative ways for handling risk instead of minimizing (2) are used in theliterature:
• max mint=1,...,T ∑n

j=1 xjrjt , which maximizes the return of the portfolio in the worst pe-riod [You98].
• min σ̂ 2 = ∑

i
∑

j xixj σ̂iσ̂jρij where σ̂ 2
j = 1

T
∑T

t=1 (rjt − R̂j)2 and ρij = 1 if i = j or 2otherwise, which leads to the mean-variance portfolio as introduced by Markovitz in the1950s [Mar52].
Can these expressions be used in a linear programming problem? For the criteria that canbe linearized generate the efficient frontier introducing the new criterion in place of (2) in the

6



DM559/DM545 – Spring 2018 Assignment Sheet

linear programming problem of point 1. Describe the new model, implement it, run the testsand report the new frontier. Comment the results.
SolutionThe second expression leads to a quadratic optimization problem and it is not linearaziblewithout loss of information. Gurobi can solve quadratic programming models, see the example at
http://www.gurobi.com/documentation/current/examples/portfolio_py.html. However,we do not treat quadratic programming in this course.The first model is instead linearizable by introducing a single auxiliary variable y as follows.

max y (10)
s.t. N∑

j=1 xj = 1 (11)
N∑
j=1 xj (rj,t) ≥ y ∀t = 1..T (12)
N∑
j=1 xjE [rj ] ≥ B (13)
0 ≤ xj ≤ 1 ∀j = 1..N (14)
y ∈ R (15)

The python code is:
def solve(data, epsilon):

m = Model("portfolio")

m.setParam(GRB.param.Method, 0)

B = data.min_r + (epsilon/100)*(data.max_r-data.min_r);

### Write here your models

x={}

for j in data.assets:

x[j] = m.addVar(lb=0.0,ub=1.0, obj=0.0, vtype=GRB.CONTINUOUS, name="x_%d" %

j)

y = m.addVar(lb=-GRB.INFINITY,ub=GRB.INFINITY, obj=1.0, vtype=GRB.CONTINUOUS,

name="y")

7
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Figure 3:
m.update()

m.setObjective(y, GRB.MAXIMIZE)

m.addConstr(quicksum(x[j] for j in data.assets)==1,"budget")

for t in data.times:

m.addConstr(quicksum(x[j]*(data.r[j,t]) for j in data.assets) >= y, "

minimax_%d" % t )

m.addConstr(quicksum( x[j]*data.av_r[j] for j in data.assets) >= B);

# m.write("model.lp") # always good to cross check!

m.optimize()

return m.objVal, B

The frontier in Figure 3 shows again the trade off risk-reward. The two figures use different εsets. For the plot on the left it uses the default values {0, 10, 20, . . . , 90} while the plot on theleft zooms on the high reward part with ε ∈ {50, 55, 60, 65, . . . , 95, 100}. Since now the riskis the worst reward through the time periods, as the worst reward decreases (in the picture itbecomes even negative, which means we are incurring in a loss) the reward increases. That is,to obtain a high expected return, we have to accept the risk of loosing money in some period.4. Due to management costs, there is typically a cardinality constraint restricting the number ofdifferent assets that can be bought. Model also this aspect in your model from point 1 and solveit for one single point of the frontier, namely for ε = 20, when the number of different assetsmust be smaller than 10. Report the model, the number of variables and constraints expressedin terms of N and T and comment on the computational results.
Solution We need to introduce binary variables zj for each j = 1..N that indicates whether we
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are buying or not the asset and then add two constratins to the model of Task 1:

min T∑
t=1 yt (16)

s.t. N∑
j=1 xj = 1 (17)
N∑
j=1 xj (rj,t − E [rj ]) ≤ yt ∀t = 1..T (18)
N∑
j=1 xj (E [rj ]− rj,t) ≤ yt ∀t = 1..T (19)
N∑
j=1 xjE [rj ] ≥ B (20)
zj ≥ xj ∀j = 1..N (21)
N∑
j=1 zj ≤ 9 (22)
0 ≤ xj ≤ 1 ∀j = 1..N (23)
yt ≥ 0 ∀t = 1..T (24)
zj ∈ {0, 1} ∀j = 1..N (25)(26)

We added N variables and 2N + 1 constraints. Since now the problem differently from the pre-vious two tasks is an Interger Linear Programming problem the solution time incereases and wemight not be able to find a solution in a reasonable amount of time. I interrupted the executionafter 338 nodes had been explored in the branch and bound. At this point the optimality gapwas 94.1%, quite far from being closed. The best primal bound was 2.605007439670 and thedual bound 1.527562667533. Since a primal bound was found, a feasible solution was availablefor use.5. Another practical issue due to management costs is the presence of a lower bound ν to thefraction of assets to put in one single investment. In other terms, the fraction of assets to allocatein one investment can be either zero or a value between ν and 1. Model this restriction in yourmodel from point 1 and solve it when ν = 0.01 and ε = 20. Report the model, the number ofvariables and constraints expressed in function of N and T and comment on the computationalresults.
Solution We introduce again a binary variable zj for each j = 1..N that indicates whether we
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are buying or not the asset:

min T∑
t=1 yt (27)

s.t. N∑
j=1 xj = 1 (28)
N∑
j=1 xj (rj,t − E [rj ]) ≤ yt ∀t = 1..T (29)
N∑
j=1 xj (E [rj ]− rj,t) ≤ yt ∀t = 1..T (30)
N∑
j=1 xjE [rj ] ≥ B (31)
xj ≤ zj ∀j = 1..N (32)
xi ≥ 0.01zj ∀j = 1..N (33)0 ≤ xj ≤ 1 ∀j = 1..N (34)
yt ≥ 0 ∀t = 1..T (35)
zj ∈ {0, 1} ∀j = 1..N (36)(37)

The python code is:
def solve(data, epsilon):

m = Model("portfolio")

m.setParam(GRB.param.Method, 0)

B = data.min_r + (epsilon/100)*(data.max_r-data.min_r);

### Write here your models

x={}

for j in data.assets:

x[j] = m.addVar(lb=0.0,ub=1.0, obj=0.0, vtype=GRB.CONTINUOUS, name="x_%d" %

j)

y={}

for t in data.times:

y[t] = m.addVar(lb=0.0,ub=GRB.INFINITY, obj=0.0, vtype=GRB.CONTINUOUS, name

="y_%d " % t)

z={}

for j in data.assets:

z[j] = m.addVar(lb=0.0,ub=1.0, obj=0.0, vtype=GRB.BINARY, name="z_%d" % j)

m.update()

m.setObjective(quicksum(y[t] for t in data.times), GRB.MINIMIZE)

m.addConstr(quicksum(x[j] for j in data.assets)==1,"budget")

for t in data.times:

m.addConstr(quicksum(x[j]*(data.r[j,t]-data.av_r[j]) for j in data.assets)

<= y[t], "abs1_%d" % t )

m.addConstr(quicksum(x[j]*(data.av_r[j]-data.r[j,t]) for j in data.assets)

<= y[t], "abs2_%d" % t )
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m.addConstr(quicksum( x[j]*data.av_r[j] for j in data.assets) >= B);

for j in data.assets:

m.addConstr(z[j]>=x[j],"z_%d" % j);

m.addConstr(quicksum( z[j] for j in data.assets) <= 9,"card");

m.optimize()

return m.objVal, B

We added N variables and 3N + 1 constraints. Although the problem is like the above one anInteger Programming Problem, Gurobi is able to find the optimal solution already at the rootnode in less than one seconds. The optimal solution has value 1.601000778778e − 01.In the previous editions of this course the glpsolve from GLPK was used. That solver could notfind an optimality in less than one hour. An upper bound was found with an optimality gap of75%:
12894: mip = 6.300338790e-01 >= 1.529949735e-01 75.7\% (156; 1)
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