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Solution:Included.
Exercise 1*Consider the following problem:

maximize z = x1 − x2subject to x1 + x2 ≤ 22x1 + 2x2 ≥ 2
x1, x2 ≥ 0In the ordinary simplex method this problem does not have an initial feasible basis. Hence, the methodhas to be enhanced by a preliminary phase to attain a feasible basis. Traditionally we talk about a

phase I–phase II simplex method. In phase I an initial feasible solution is sought and in phase II theordinary simplex is started from the initial feasible solution found.There are two ways to carry out phase I.
• In lecture 4 we saw a way to find an initial feasible basis via an auxiliary LP problem definedby introducing auxiliary variables and minimizing them in the objective. Phase I is thus carriedout by solving an auxiliary LP problem whose solution gives an initial feasible basis or a proof ofinfeasibility.
• The strong duality theorem states that we can solve the primal problem by solving its dual. You canverify that applying the primal simplex method to the dual problem corresponds to the followingmethod, called dual simplex method that works on the primal problem:

1. (Feasibility condition) select the leaving variable by picking the basic variable whose right-hand side term is negative, i.e., select i∗ with bi∗ < 0.2. (Optimality condition) pick the entering variable by scanning across the selected row andcomparing ratios of the coefficients in this row to the corresponding coefficients in the ob-jective row, looking for the largest negated. Formally, select j∗ such that j∗ = min{|cj /ai∗j | :
ai∗j < 0}3. Update the tableau around the pivot in the same way as with the primal simplex.4. Stop if no right-hand side term is negative.

Opposite to the primal simplex method, the dual simplex method iterates through infeasible basis solu-tions, while maintaining them optimal, and stops when a feasible solution is reached.Duality can help us with the issue of initial feasible basis solutions. In the problem above, if the objectivefunction was w = −x1− x2, then the initial basis solution of the dual problem would be feasible and wecould solve the problem solving the dual problem with the primal simplex. But with objective function
z the simplex has infeasible initial basis in both problems. However we can change temporarily theobjective function z with w and apply the dual simplex method. When it stops we reached a feasiblesolution that is optimal with respect to w . We can then reintroduce the original objective function andcontinue iterating with the primal simplex. This phase I–phase II simplex method is also called the
dual-primal simplex method. Apply this method to the problem above and verify that it leads to thesame solution as in point 1.
Solution:
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max x1 − x2 = z

x1 + x2 ≤ 22x1 + 2x2 ≥ 2
x1, x2 ≥ 0We put in equational standard form by introducing a slack variable s1 ≥ 0 and a surplus variable s2 ≥ 0:

max x1 − x2 = z
x1 + x2 + s1 = 22x1 + 2x2 − s2 = 2

x1, x2, s1, s2 ≥ 0
This form is not canonical and therefore the first tableau does not have a feasible starting solution.
Auxiliary Problem ApproachWe proceed by
• Phase I solving an auxiliary/augmented problem
• Phase II continuing with ordinary simplex

Phase I We introduce an auxiliary variable a1 ≥ 0 in the constraint that makes the infeasibility toyield a canonical form: max x1 − x2 = z
x1 + x2 + s1 = 22x1 + 2x2 − s2 + a1 = 2

x1, x2, s1, s2, a1 ≥ 0Now we have a canonical form
| x1 | x2 | s1 | s2 | a1 | -z | b |

|----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+---|

This problem will have the same solution as the original one only when a1 = 0. We can then solve
• an augmented problem by introducing the following objective function maxw = x1 − x2 − Ma1,where M is a large enough constant or
• an auxiliary problem minw = a1 = −max(−a1).Let’s take the auxiliary problem, if w∗ > 0 then we will conclude that the feasibility region of the orginalproblem is empty. Otherwise, if w∗ = 0, then this implies that a1 = 0 and we found a feasible solution.Let’s proceed by setting up the tableau of the auxiliary problem

| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|----+----+----+----+----+----+----+---|
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This is not in canonical form but it is easy to bring it to canonical form: just add the second row to thelast one.

| x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|----+----+----+----+----+----+----+---|

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |

| 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |

| 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |

| 2 | 2 | 0 | -1 | 0 | 0 | 1 | 2 |

|----+----+----+----+----+----+----+---|

The variables s1, a1 give us a feasible basis now. It is not optimal. We proceed with the pivot operations.In this case it is worth noting that in the ratio rule, we do not consider the third row since that rowcorresponds to the orginal objective function and not to a constraint.We make x1 enter the basis and consequently a1 goes out. The pivot is 2 and the new tableau:
| | x1 | x2 | s1 | s2 | a1 | -z | -w | b |

|------------+----+----+----+------+------+----+----+----|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | -1/2 | 0 | 0 | 1 |

| R2’=R2/2 | 1 | 1 | 0 | -1/2 | 1/2 | 0 | 0 | 1 |

| R3’=R3-R2’ | 0 | -2 | 0 | 1/2 | -1/2 | 1 | 0 | -1 |

| R4’=R4-R2 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

|------------+----+----+----+------+------+----+----+----|

The tableau is optimal. One non basic variable has reduced cost null, which indicates that there areinfinite solutions, but this is not relevant now. The relevant thing is that w∗ = 0 hence the minimum ofthe auxiliary problem is 0 and hence there is a feasible solution for a1 = 0. This concludes the PhaseI of the algorithm since a feasible solution for the auxiliary problem is feasible also for the originalproblem.
Phase II We throw away the last row and the second last column from the tableau since we do notneed them anymore.

| x1 | x2 | s1 | s2 | a1 | -z | b |

+----+----+----+------+------+----+----|

| 0 | 0 | 1 | 1/2 | -1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 1/2 | 0 | 1 |

| 0 | -2 | 0 | 1/2 | -1/2 | 1 | -1 |

+----+----+----+------+------+----+----|

The tableau is not optimal. The basic solution corresponding to this tableau is feasible but not optimal.We bring s4 in the basis and make s3 leave. The new tableau is:
| | x1 | x2 | s1 | s2 | a1 | -z | b |

|-----------+----+----+----+------+-----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | -1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 0 | -1/2 | 1/2 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 0 | 1 | -2 |

|-----------+----+----+----+------+-----+----+----|

The tableau is now optimal. The optimal solution is x = (2, 0) and z∗ = 2.
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Dual-Primal Simplex Method

Phase I Let’s write the dual of the problem above:
max x1 − x2 = z

x1 + x2 ≤ 22x1 + 2x2 ≥ 2
x1, x2 ≥ 0

min 2y′1 + 2y′2 = w
y′1 + 2y′2 ≥ 1
y′1 + 2y′2 ≥ −1

y′1 ≥ 0
y′2 ≤ 0

y′1=y1
y′2=−y2−−−−→

min 2y1 − 2y2 = w
y1 − 2y2 ≥ 1
y1 − 2y2 ≥ −1

y1, y2 ≥ 0If we put this LP problem in standard form:
max −2y1 + 2y2 = w

−y1 + 2y2 ≤ −1
−y1 + 2y2 ≤ 1

y1, y2 ≥ 0
and looking at the tableau:

| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+----|

| -1 | 2 | 1 | 0 | 0 | -1 |

| -1 | 2 | 0 | 1 | 0 | 1 |

| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----|

we see that the initial tableau like for the primal problem is infeasible.However, the dual problem has an advantage, if we change temporarily the objective function of theprimal problem to η = −x1 − x2, the dual problm becomes:
max−x1− x2=η

x1+ x2≤22x1+2x2≥2
x1, x2≥0

min2y1−2y2= γ
y1−2y2≥ 1
y1−2y2≥−1
y1, y2≥ 0

max−2y1+2y2=γ
−y1+2y2≤1
−y1+2y2≤1

y1, y2≥0
and the corresponding tableau has an easy basic feasible solution:

| y1 | y2 | s1 | s2 | -z | b |

|----+----+----+----+----+---|

| -1 | 2 | 1 | 0 | 0 | 1 |

| -1 | 2 | 0 | 1 | 0 | 1 |

| -2 | 2 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+---|

We can then solve to optimality with the primal simplex: the variable y2 enters the basis and thevariable s2 exits. The new tableau becomes:
| | y1 | y2 | s1 | s2 | -z | b |

|-----------+------+----+----+-----+----+------|

| R1 | -1 | 2 | 1 | 0 | 0 | 1 |

| R2’=R2/2 | -1/2 | 1 | 0 | 1/2 | 0 | 1/2 |
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| R3’=R3-R2 | -1 | 0 | 0 | -1 | 1 | -1/2 |

|-----------+------+----+----+-----+----+------|

and it is optimal. At this stage we can go back to the primal problem where we now have a feasiblesolution, change the objective function back to the original one and continue with the primal simplex.
We can do the same iteration on the primal but with the dual simplex. Let’s write the tableau of theprimal with the objective function temporarily changed and keeping the old objective as well:

| x1 | x2 | s1 | s2 | -z | -e | b |

|----+----+----+----+----+----+----|

| 1 | 1 | 1 | 0 | 0 | 0 | 2 |

| -2 | -2 | 0 | 1 | 0 | 0 | -2 |

| 1 | -1 | 0 | 0 | 1 | 0 | 0 |

| -1 | -1 | 0 | 0 | 0 | 1 | 0 |

|----+----+----+----+----+----+----|

As we see we have the conditions of the dual simplex satisfied, the tableau is optimal but not feasible.Let’s make an iteration of the dual simplex. We choose the row with negative b term and the columnwith negative pivot that minimizes the ratio test: |c/a|. We choose the second row and the secondcolumn (again watch out that we do not consider the row of the addd old objective to decide the row).In other terms we try to make the solution feasible while minimizing the loss in quality. The opertationsto update the tableau remain the same as for the primal simplex. We obtan:
| | x1 | x2 | s1 | s2 | -z | -e | b |

|------------+----+----+----+------+----+----+---|

| R1’=R1-R2’ | 0 | 0 | 1 | 1/2 | 0 | 0 | 1 |

| R2’=-1/2R2 | 1 | 1 | 0 | -1/2 | 0 | 0 | 1 |

| R3’=R3+R2’ | 2 | 0 | 0 | -1/2 | 1 | 0 | 1 |

| R4’=R4+R2’ | 0 | 0 | 0 | -1/2 | 0 | 1 | 1 |

|------------+----+----+----+------+----+----+---|

This tableau is optimal for the dual simplex, this means that a feasible solution for the primal problemhas been found: (0, 1, 1, 0). We can now proceed with the primal simplex.Note that the considerations on the dual problem made above were just for explanation purposes, whensolving our LP problem we do not need to write down the dual form of it or its tableaux. Instead, wejust need to switch from dual simplex to primal simplex always working on the original (the primal)formulation of the problem. The dual simplex method simply a new way of picking the entering andleaving variables in a sequence of primal tableaux.
Phase II We can now remove the temporary objective function and the corresponding column andproceed with the primal simplex.

| x1 | x2 | s1 | s2 | -z | b |

|----+----+----+------+----+---|

| 0 | 0 | 1 | 1/2 | 0 | 1 |

| 1 | 1 | 0 | -1/2 | 0 | 1 |

| 2 | 0 | 0 | -1/2 | 1 | 1 |

|----+----+----+------+----+---|
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x1 enters the basis and x2 exits. The tableau is updated consequently:
| | x1 | x2 | s1 | s2 | -z | b |

|-------------+----+----+----+------+----+----|

| R1’=R1 | 0 | 0 | 1 | 1/2 | 0 | 1 |

| R2’=R2 | 1 | 1 | 0 | -1/2 | 0 | 1 |

| R3’=R3-2*R2 | 0 | -2 | 0 | 1/2 | 1 | -1 |

|-------------+----+----+----+------+----+----|

A reduced cost is still positive, hence we make s2 enters in the basis and s1 leave. This leads to
| | x1 | x2 | s1 | s2 | -z | b |

|-----------+----+----+----+----+----+----|

| R1’=2*R1 | 0 | 0 | 2 | 1 | 0 | 2 |

| R2’=R2+R1 | 1 | 1 | 1 | 0 | 0 | 2 |

| R3’=R3-R1 | 0 | -2 | -1 | 0 | 1 | -2 |

|-----------+----+----+----+----+----+----|

The tableau is now optimal and the corresponding basic feasible solution is x = (2, 0) and has value
z∗ = 2.We can visualize the problem using the LP Grapher tool linked from the course webpage:

Exercise 2* Sensitivity Analysis and Revised SimplexA furniture-manufacturing company can produce four types of product using three resources.
• A bookcase requires three hours of work, one unit of metal, and four units of wood and it bringsin a net profit of 19 Euro.
• A desk requires two hours of work, one unit of metal and three units of wood, and it brings in anet profit of 13 Euro.
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• A chair requires one hour of work, one unit of metal and three units of wood and it brings in a netprofit of 12 Euro.
• A bedframe requires two hours of work, one unit of metal, and four units of wood and it brings ina net profit of 17 Euro.
• Only 225 hours of labor, 117 units of metal and 420 units of wood are available per day.

In order to decide how much to make of each product so as to maximize the total profit, the managerssolve the following LP problem
max 19x1 + 13x2 + 12x3 + 17x43x1 + 2x2 + x3 + 2x4 ≤ 225

x1 + x2 + x3 + x4 ≤ 1174x1 + 3x2 + 3x3 + 4x4 ≤ 420
x1, x2, x3, x4 ≥ 0The final tableau has x1, x3 and x4 in basis. With the help of a computational environment such asPython for carrying out linear algebra operations, address the following points:

a) Write AB , AN , A−1
B AN , the final simplex tableau and verify that the solution is indeed optimal.

Solution:The initial tableau is:
|-----+-----+-----+-----+-----+-----+-----+----+-----|

| x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | -z | b |

|-----+-----+-----+-----+-----+-----+-----+----+-----|

| 3 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | 225 |

| 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 117 |

| 4 | 3 | 3 | 4 | 0 | 0 | 1 | 0 | 420 |

| 19 | 13 | 12 | 17 | 0 | 0 | 0 | 1 | 0 |

|-----+-----+-----+-----+-----+-----+-----+----+-----|

We know that there will be 3 variables in basis. The text of the problem tells us which these 3variables are: 1, 3, 4. Hence,
AB = 3 1 21 1 14 3 4

 AN = 2 1 0 01 0 1 03 0 0 1


We can calculate A−1
B AN in Python or in R:

> B=matrix(c(3,1,2,1,1,1,4,3,4),byrow=TRUE,ncol=3)

> B1=solve(B)

> B%*%B1 # check to make sure it is correct!

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

> N=matrix(c( 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1),ncol=4,byrow=TRUE)

> B1%*%N

[,1] [,2] [,3] [,4]

[1,] 1 1 2 -1

[2,] 1 0 4 -1

[3,] -1 -1 -5 2

> cN=c(13,0,0,0)

> cB=c(19,12,17)

> cN-cB%*%B1%*%N

[,1] [,2] [,3] [,4]
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[1,] -1 -2 -1 -3

> cB%*%B1%*%c(225,117,420)

> 1827

This code gives us:
Ā = A−1

B AN =  1 1 2 −11 0 4 −1
−1 −1 −5 2

 x∗B = x1x3
x4
 = A−1

B b = 394830


c̄N = [c̄2 c̄5 c̄6 c̄7] = [−1 −2 −1 −3]
and we can write the final tableau as:
|-----+-----+-----+-----+-----+-----+-----+----+-------|

| x_1 | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | -z | b |

|-----+-----+-----+-----+-----+-----+-----+----+-------|

| 1 | 1 | 0 | 0 | 1 | 2 | -1 | 0 | 39 |

| 0 | 1 | 1 | 0 | 0 | 4 | -1 | 0 | 48 |

| 0 | -1 | 0 | 1 | -1 | -5 | 2 | 0 | 30 |

| 0 | -1 | 0 | 0 | -2 | -1 | -3 | 1 | -1827 |

|-----+-----+-----+-----+-----+-----+-----+----+-------|

Since all reduced costs are negative then the tableau and the corresponding solution are optimal.b) What is the increase in price (reduced cost) that would make product x2 worth to be produced?
Solution:The increase in price of a quantity strictly larger than 1 would make the product 2 worth beingproduced. Indeed, let c′2 = c2 + δ be the new price. We know that the coefficient in the objectivefunction goes in the reduced cost calculation multiplied by 1. Hence, to have a positive reduced costwe have:

−1 + δ > 0 =⇒ δ > 1We could also recalcuate the reduced cost from scratch using the multipliers π: c′2 +∑3
i=1 πiai2. Thevalue of πi are read from the final tableau and they correspond to the reduced costs of the slackvariables, ie, (−2,−1,−3).c) What is the marginal value (shadow price) of an extra hour of work or amount of metal and wood?

Solution:The marginal values are the values of the dual variable y1, y2, y3. From the strong duality theorem,we know that yi = −πi = −c̄n+i, i = 1..m. Hence, y = (2, 1, 3).An extra hour of work has marginal value of 2, that is, having one unit more of work would improvethe revenue by 2. For the other two resources the marginal values are 1 and 3, respectively.We can cross check these conclusions: by the complementary slackness theorem, the fact thatall three dual variables are strictly positive indicates that all three constraints in the primal areactive≡tight≡ binding. Hence, it makes sense to have that an increase in the capacity of thoseconstraints implies an increase in the profit. The conclusion that all three constraints are tight canbe also reached by the fact that the slack variables are 0 in the final tableau. If some constraint wasnot tight, then the marginal value of the corresponding resource would be zero since an increase inits capacity does not imply an immediate improvement in total profit.d) Are all resources totally utilized, i.e. are all constraints “binding”, or is there slack capacity in someof them? Answer this question in the light of the complementary slackness theorem.
Solution:

8



DM559/DM545 – Spring 2018 Assignment Sheet
Since all dual variables are strictly larger than zero, then all constraints are binding. Indeed for thecomplementary slackness theorem, we have that:bi − n∑

j=1 aijx
∗
j

y∗i = 0, i = 1, . . . , m
e) From the economical interpretation of the dual why product x2 is not worth producing? What is itsimputed cost?

Solution:It is not worth producing 2 because ∑i yiai2 > c2, that is, we are better off selling the raw materialsto produce the product. Indeed yi is the price of one unit of resource i and ai2 is the amount of inecessary to produce 2. ∑
i
yiai2 = 2 ∗ (2) + 1 ∗ (1) + 3 ∗ (3) = 14 > 13

Solve the following variations:1. The net profit brought in by each desk increases from 13 Euro to 15 Euro.
Solution:We saw earlier that if the price of product 2 increases by more than 1 then the reduced costbecomes positive and it enters the basis. We can iterate the revised simplex as follows:Step 1 and 2 to determine the entering varible are already done in the point a) above.We need to do Step 3 to determine the leaving variable: we need to find the constraint that limitthe increase of x2, theta. We solve first ABd = a in d. Here, a is the column of the matrix
A (augmented with the slack variables) from the initial tableau corresponding to the enteringvariable x2. We use the inverse of AB calculated earlier in a) above in R:
> B1%*%c(2,1,3)

[,1]

[1,] 1

[2,] 1

[3,] -1

that is
d = A−1

B a = A−1
B

213
 =  11

−1


Then the new solutioon xB is derived from the old one by means of d and the increase θ:
xB = x1x3

x4
 = 394830

−  11
−1
θ ≥ 0

The increase θ must be such that the value of the variables still remains feasible, ie, xi ≥ 0. Hence
θ ≤ 39 and the leaving variable is x1, since it is the one that goes to zero. The new solutions is

xB = x2x3
x4
 == 394830

−  11
−1
θ = 39− 3948− 3930 + 39

 =  0969


and the objective value:
9
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> c=c(19,15,12,17)

> c%*%c(0,39,9,69)

[,1]

[1,] 1866

2. The availability of metal increases from 117 to 125 units per day
Solution:This is a change in the RHS term of constraint 2. The optimality of the current solution does notchange, since all reduced costs stay negative, but we need to check if we are still feasible. Weneed to look at the final tablea and recompute the b of all constraints. We can do this with A−1

B b:
> b=c(225,125,420)

> B1%*%b

[,1]

[1,] 55

[2,] 80

[3,] -10

The last cosntraint becomes negative, hence we need to iterate with the dual simplex.3. The company may also produce coffee tables, each of which requires three hours of work, one unitof metal, two units of wood and bring in a net profit of 14 Euro.
Solution:We need to check if the reduced cost of the new variable would become positive by computing
c0 +∑i πiaij :
> 14-3*2-1*1-2*3

[1] 1

which is positive, hence we need to iterate as done in point 1).4. The number of chairs produced must be at most five times the numbers of desks
Solution:This corresponds to introduce a new constraint: x3 ≤ 5x2. In the new standard form we have a newslack variable x8. Adding the constraint in the tableau and bringing back the tableau in canonicalstandard form we observe that a RHS term becomes negative. Hence, we need to iterate with thedual simplex. After on iteration with the dual simplex, the final tableau becomes:

1 0 0 0 1 4/3 −5/6 1/6 0 310 1 0 0 0 2/3 −1/6 −1/6 0 80 0 0 1 −1 −13/3 11/6 −1/6 0 380 0 1 0 0 10/3 −5/6 1/6 0 400 0 0 0 −2 −1/3 −19/6 −1/6 1 −1819


If after the introduction of the constraint the current solution had stayed feasible then we wouldhave needed to check whether its was also optimal. We can either repeat the steps done at part1 above to compute the new reduced costs or we can include the new row in the final tableau andproceed to put the tableau in canonical form. Then we look at the value of the reduced costs.

Exercise 3Solve the systems yTE1E2E3E4 = [1 2 3] and E1E2E3E4d = [1 2 3]T with
10
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E1 = 1 3 00 0.5 00 4 1
 E2 = 2 0 01 1 04 0 1

 E3 = 1 0 10 1 30 0 1
 E4 = −0.5 0 03 1 01 0 1


Solution:This exercise is to show that the two systems can be solved quite easily. Let’s take first yTE1E2E3E4 =[1 2 3], we use the backward transformation and solve the sequence of linear systems:

uTE4 = [1 2 3], vTE3 = uT , wTE2 = vT , yTE1 = wT

uT
−0.5 0 03 1 01 0 1

 = [1, 2, 3]
Since the eta matrices have always one 1 in two columns then the solution can be read up easily. Fromthe third column we find u3 = 3. From the second column, we find u2 = 2. Substituting in the firstcolumn, we find −0.5u1 + 3 ∗ 2 + 1 ∗ 3 = 1, which yields u1 = 18. The next syestem is:

vT
1 0 10 1 30 0 1

 = [18, 2, 3]
From the first column we get v1 = 18, from the second column v2 = 2 from the last column v3 = 3/24.The next:

w = 2 0 01 1 04 0 1
 = [18, 2, 3/24]

...
Exercise 4* QuzziesBasic Geometric Facts

1. In 4D, how many hyperplanes need to intersect to give a point?
Solution:42. In 4D, can a point be described by more than 4 hyperplanes?
Solution:Yes, just think of a pyramid in 3D3. Consider the intersection of n hyperplanes in n dimensions: when does it uniquely identify apoint?
Solution:when the rank of the matrix A of the linear system is n (or A is nonsingular)

Vertices of Polyhedra:Consider the polyhedron described by Ax ≤ b, A ∈ Rm×n, x ∈ Rn, that is:
a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2... ...
am1x1 + am2x2 + · · · + amnxn ≤ bm
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4. How many constraints are active in a vertex of a polyhedron Ax ≤ b, A ∈ Rm×n, x ∈ Rn?

Solution:at least n, rank of matrix of active constraints is n5. Does every point x that activates n constraints form a vertex of the polyhedron?
Solution:no, some may be not feasible, ie, intersection in a point outside of the polyhedron6. Can a vertex activate more than n constraints?
Solution:Yes, just look at the pyramid in 3 dim. However, the rank of the matrix of active constraints is still
n7. What if there are more variables than constraints? If m > n then we can find a subset and thenactivate but what if m < n, can we have a vertex?
Solution:No. In LP we deal with this issue by adding slack variables, they make us choose arbitrarily avertex8. Combinatorial explosion of vertices: how many constraints and vertices has an n-dimensionalhypercube?
Solution:To define a cube we need 6 constraints and there are 23 vertices. For an n-hypercube we need2n constraints and there are 2n vertices9. If there are m constraints and n variables, m > n, what is an upper bound to the number ofvertices?
Solution:the number of possible active constraints is (mn) it is an upper bound because:

– some combinations of constraints will not define a vertex, ie, if rows of matrix not independent
– some vertices are outside the polyhedron
– some vertices may activate more than n constraints and hence the same vertex can be givenby more than n constraints

Tableaux and Vertices
10. For each of these three statements, say if they are true or false:

– One tableau =⇒ one vertex of the feasible region
– One tableau ⇐= one vertex of the feasible region
– One tableau ⇐⇒ one vertex of the feasible region

12
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Solution:One tableau ��⇐= one vertex of the feasible region degenerate vertices have several tableau asso-ciated11. Consider the following LP problem and the corresponding final tableau:max 6x1 + 8x25x1 + 10x2 ≤ 604x1 + 4x2 ≤ 40

x1, x2 ≥ 0
x1 x2 x3 x4 −z b

x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 80 0 −2/5 −1 1 −64

– How many variables (original and slack) can be different from zero?
Solution:at most 2

– (x3, x4) = (0, 0) are non basic, what does this tell us about the constraints?
Solution:They are active because their dual values are not zeroLet’s generalize the previous case. Consider an LP with m constraints, n original variables and mslack variables. In an optimal solution:

– is m > n, how many variables (original and slack) can be nonzero at most?
Solution:at most m

– If m < n how many original variables must be zero at least? In other terms, in a mix planningproblem with n products and m, m < n resources, how many products at most will be to beproduced in an optimal solution?
Solution:
n−m, and hence at most m < n products
Solution:at most m

12. Consider the following LP problem and the corresponding final tableau:max 6x1 + 8x25x1 + 10x2 ≤ 604x1 + 4x2 ≤ 40
x1, x2 ≥ 0

x1 x2 x3 x4 −z b
x3 0 0 1 1/2 0 1
x1 1 1 0 −1/2 0 10 −2 0 1/2 1 −1(x2, x4) = (0, 0) is non basic, what does this tell us about the constraints?

Solution:The second constraint is active because its slack x4 is zero. x2 = 0 =⇒ x2 ≥ 0 is active.13. If in the original space of the problem we had 3 variables, and there are 6 constraints, how manyconstraints would be active?
Solution:3 constraints. With slack variables we would have 6 variables in all, if any of them is positive theconstraint xi ≥ 0 of the original variables would be active, otherwise the corresponding constraintsof the original problem are active.

13
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14. For the general case with n original variables:One basic feasible solution ⇐⇒ a matrix of active constraints has rank n. True or False?

Solution:True15. Consider an LP problem with m constraints and n original variables, m > n. We saw that in Rn apoint is the intersection of at least n hyperplanes. In LP this corresponds to say that in a vertexthere are n active constraints. Let a tableau be associated with a solution that makes exactly
n + 1 constraints active, what can we say about the corresponding basic and non-basic variablevalues?
Solution:one basic variable is zero. Indeed, in the simplex we will have m+n variables and m variables inbasis. We saw that the n non basic variables are set to zero and that there is an active constraintfor each of them. Hence, if there are n+ 1 active constraints, there must be another variable thatis set to zero. It must be a basic variable.16. What is the algebraic definition of adjacency in 2, 3 and n dimensions?
Solution:two vertices are adjacent iff:

– they have at least n− 1 active constraints in common
– rank of common active constraints is n− 1

17. How does this condition translate in terms of tableau?
Solution:For what seen above this translates in n− 1 variables in common in the tableau
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