DM554/DM545
Linear and Integer Programming

Lecture 10
 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Relaxations
2. Well Solved Problems

Remarks on Assignment 1.1

- do not make statements without evidence supporting them
- summarize and comment the results/plots
- In PS, meaning of plots
- Try to use single letter for name of variables
- use \leq, not $<=$
- $x[t]$ is programming language, x_{t} is math language
- $f(t)$ is a function, not an indexed variable/parameter
- define all variables, eg, $y \in \mathbb{R}$
- $\forall t$ must be completed by the domain of t, eg, $t=1 . .3, t \in T$
- In LaTeX use \begin\{array\} or \begin\{align\} or \begin\{equation\} to write your models }
- Be short!

Outline

1. Relaxations
2. Well Solved Problems

Optimality and Relaxation

$$
z=\max \left\{c(\mathbf{x}): \mathbf{x} \in X \subseteq \mathbb{Z}^{n}\right\}
$$

How can we prove that x^{*} is optimal?
\bar{z} is UB
z is LB
stop when $\bar{z}-\underline{z} \leq \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a primal bound may be easy or hard to find, heuristics
- Dual bounds (here upper bounds): Relaxations

Optimality gap (miplib): (gurobi $(d b-p b) / p b)$

$$
\text { gap }=\frac{d b-p b}{\sup \{|z|, z \in[p b, d b]\}}(\cdot 100) \quad \text { for a maximization problem }
$$

(If $p b \geq 0$ and $d b \geq 0$ then $\frac{d b-p b}{d b}$. If $d b=p b=0$ then gap $=0$. If no feasible sol found or $p b \leq 0 \leq d b$ then gap is not computed.)

Proposition

$$
\begin{aligned}
(R P) z^{R} & =\max \left\{f(\mathbf{x}): \mathbf{x} \in T \subseteq \mathbb{R}^{n}\right\} \text { is a relaxation of } \\
(I P) z & =\max \left\{c(\mathbf{x}): \mathbf{x} \in X \subseteq \mathbb{R}^{n}\right\} \text { if }:
\end{aligned}
$$

(i) $X \subseteq T$ or
(ii) $f(\mathbf{x}) \geq c(\mathbf{x}) \forall \mathbf{x} \in X$

In other terms:

$$
\max _{\mathbf{x} \in T} f(\mathbf{x}) \geq\left\{\begin{array}{l}
\max _{\mathbf{x} \in T} c(\mathbf{x}) \\
\max _{\mathbf{x} \in X} f(\mathbf{x})
\end{array}\right\} \geq \max _{\mathbf{x} \in X} c(\mathbf{x})
$$

- T: candidate solutions;
- $X \subseteq T$ feasible solutions;
- $f(\mathbf{x}) \geq c(\mathbf{x})$

Relaxations

How to construct relaxations?

1. IP: $\max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in P \cap \mathbb{Z}^{n}\right\}, P=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}$
$L P: \max \left\{\mathbf{c}^{\top} \mathbf{x}: \mathbf{x} \in P\right\}$
Better formulations give better bounds $\left(P_{1} \subseteq P_{2}\right)$
Proposition
(i) If a relaxation $R P$ is infeasible, the original problem IP is infeasible.
(ii) Let x^{*} be optimal solution for $R P$. If $\mathrm{x}^{*} \in X$ and $f\left(\mathrm{x}^{*}\right)=c\left(\mathrm{x}^{*}\right)$ then x^{*} is optimal for $I P$.
2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
3. Lagrangian relaxation

$$
\begin{array}{lr}
I P: & z=\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in X \subseteq \mathbb{Z}^{n}\right\} \\
L R: & z(\mathbf{u})=\max \left\{\mathbf{c}^{T} \mathbf{x}+\mathbf{u}(\mathbf{b}-A \mathbf{x}): \mathbf{x} \in X\right\}
\end{array}
$$

$$
z(\mathbf{u}) \geq z \quad \forall \mathbf{u} \geq \mathbf{0}
$$

4. Duality:

Definition
Two problems:

$$
z=\max \{c(\mathbf{x}): \mathbf{x} \in X\} \quad w=\min \{w(\mathbf{u}): \mathbf{u} \in U\}
$$

form a weak-dual pair if $c(\mathbf{x}) \leq w(\mathbf{u})$ for all $\mathbf{x} \in X$ and all $\mathbf{u} \in U$.
When $z=w$ they form a strong-dual pair

Proposition

$z=\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}$ and $w^{L P}=\min \left\{\mathbf{u}^{T} \mathbf{b}: A^{T} \mathbf{u} \geq \mathbf{c}, \mathbf{u} \in \mathbb{R}_{+}^{m}\right\}$
(ie, dual of linear relaxation) form a weak-dual pair.

Proposition
Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) If $\mathbf{x}^{*} \in X$ and $\mathbf{u}^{*} \in U$ satisfy $c\left(\mathbf{x}^{*}\right)=w\left(\mathbf{u}^{*}\right)$ then \mathbf{x}^{*} is optimal for IP and \mathbf{u}^{*} is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

Examples

Weak pairs:
Matching: $\quad z=\max \left\{\mathbf{1}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_{+}^{m}\right\}$
V. Covering: $\quad w=\min \left\{\mathbf{1}^{T} \mathbf{y}: A^{T} y \geq 1, \mathbf{y} \in \mathbb{Z}_{+}^{n}\right\}$

Proof: consider LP relaxations, then $z \leq z^{L P}=w^{L P} \leq w$. (strong when graphs are bipartite)

Weak pairs:
S. Packing: $\quad z=\max \left\{\mathbf{1}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}$
S. Covering: $\quad w=\min \left\{\mathbf{1}^{T} \mathbf{y}: A^{T} \mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_{+}^{m}\right\}$

Outline

1. Relaxations

2. Well Solved Problems

Separation problem

$\max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in X\right\} \equiv \max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in \operatorname{conv}(X)\right\}$
$X \subseteq \mathbb{Z}^{n}, P$ a polyhedron $P \subseteq \mathbb{R}^{n}$ and $X=P \cap \mathbb{Z}^{n}$
Definition (Separation problem for a COP)
Given $\mathbf{x}^{*} \in P$; is $\mathbf{x}^{*} \in \operatorname{conv}(X)$? If not find an inequality $\mathbf{a x} \leq \mathbf{b}$ satisfied by all points in X but violated by the point x^{*}.
(Farkas' lemma states the existence of such an inequality.)

Properties of Easy Problems

Four properties that often go together:
Definition
(i) Efficient optimization property: \exists a polynomial algorithm for $\max \left\{\mathbf{c x}: \mathbf{x} \in X \subseteq \mathbb{R}^{n}\right\}$
(ii) Strong duality property: \exists strong dual $\mathrm{D} \min \{w(\mathbf{u}): \mathbf{u} \in U\}$ that allows to quickly verify optimality
(iii) Efficient separation problem: \exists efficient algorithm for separation problem
(iv) Efficient convex hull property: a compact description of the convex hull is available

Example:
If explicit convex hull strong duality holds efficient separation property (just description of $\operatorname{conv}(X))$

Theoretical analysis to prove results about

- strength of certain inequalities that are facet defining 2 ways
- descriptions of convex hull of some discrete $X \subseteq \mathbb{Z}^{*}$ several ways, we see one next

Example

Let

$$
\begin{aligned}
& X=\left\{(x, y) \in \mathbb{R}_{+}^{m} \times \mathbb{B}^{1}: \sum_{i=1}^{m} x_{i} \leq m y, x_{i} \leq 1 \text { for } i=1, \ldots, m\right\} \\
& P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}^{1}: x_{i} \leq y \text { for } i=1, \ldots, m, y \leq 1\right\}
\end{aligned}
$$

Polyhedron P describes conv (X)

Totally Unimodular Matrices

When the LP solution to this problem

$$
I P: \max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}
$$

with all data integer will have integer solution?

$$
\left[\begin{array}{c:c:c:c}
& & & \\
A_{N} & A_{B} & \mathbf{0} & \mathbf{b} \\
& & & \\
\hdashline \mathbf{c}_{N}^{T} & \mathbf{c}_{B}^{T} & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A_{B} x_{B}+A_{N} x_{N}=b \\
& \mathbf{x}_{N}=\mathbf{0} \rightsquigarrow A_{B} x_{B}=\mathbf{b}, \\
& A_{B} m \times m \text { non singular matrix } \\
& \mathbf{x}_{B} \geq 0
\end{aligned}
$$

Cramer's rule for solving systems of linear equations:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right] \quad x=\frac{\left|\begin{array}{ll}
e & b \\
f & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|} \quad y=\frac{\left|\begin{array}{ll}
a & e \\
c & f
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|} \quad \mathbf{x}=A_{B}^{-1} \mathbf{b}=\frac{A_{B}^{a d j} \mathbf{b}}{\operatorname{det}\left(A_{B}\right)}
$$

Definition

- A square integer matrix B is called unimodular (UM) if $\operatorname{det}(B)= \pm 1$
- An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix of A is UM

Proposition

- If A is TUM then all vertices of $R_{1}(A)=\{\mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ are integer if \mathbf{b} is integer
- If A is TUM then all vertices of $R_{2}(A)=\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ are integer if \mathbf{b} is integer.

Proof: if A is TUM then [$\left.A_{i}^{\prime} I\right]$ is TUM
Any square, nonsingular submatrix C of $\left[A_{i}^{\prime} I\right]$ can be written as

$$
C=\left[\begin{array}{c}
B i 0 \\
\hdashline \overline{D_{1}} \bar{I}_{k}
\end{array}\right]
$$

where B is square submatrix of A. Hence $\operatorname{det}(C)=\operatorname{det}(B)= \pm 1$

Proposition

The transpose matrix A^{T} of a TUM matrix A is also TUM.
Theorem (Sufficient condition)
An integer matrix A is TUM if

1. $a_{i j} \in\{0,-1,+1\}$ for all i, j
2. each column contains at most two non-zero coefficients ($\sum_{i=1}^{m}\left|a_{i j}\right| \leq 2$)
3. if the rows can be partitioned into two sets I_{1}, I_{2} such that:

- if a column has 2 entries of same sign, their rows are in different sets
- if a column has 2 entries of different signs, their rows are in the same set

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] \quad\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Proof: by induction
Basis: one matrix of one element $\{0,+1,-1\}$ is TUM
Induction: let C be of size k.
If C has column with all $0 s$ then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

$$
\forall j: \sum_{i \in I_{1}} a_{i j}=\sum_{i \in I_{2}} a_{i j}
$$

but then a linear combination of rows is zero and $\operatorname{det}(C)=0$

Other matrices with integrality property:

- TUM
- Balanced matrices
- Perfect matrices
- Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

Proposition

A is always TUM if it comes from

- node-edge incidence matrix of undirected bipartite graphs (ie, no odd cycles) $\left(I_{1}=U, I_{2}=V, B=(U, V, E)\right)$
- node-arc incidence matrix of directed graphs $\left(I_{2}=\emptyset\right)$

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching

Summary

1. Relaxations
2. Well Solved Problems
