DM545
 Linear and Integer Programming

Lecture 12 Cutting Planes

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Cutting Plane Algorithms

Outline

1. Cutting Plane Algorithms

Valid Inequalities

- IP: $z=\max \left\{\mathbf{c}^{\top} \mathbf{x}: \mathbf{x} \in X\right\}, X=\left\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_{+}^{n}\right\}$
- Proposition: $\operatorname{conv}(X)=\{\mathbf{x}: \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0\}$ is a polyhedron
- LP: $z=\max \left\{\mathbf{c}^{\top} \mathbf{x}: \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\right\}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)
$\mathbf{a x} \leq \mathbf{b}$ is a valid inequality for $X \subseteq \mathbb{R}^{n}$ if $\mathbf{a x} \leq \mathbf{b} \forall \mathbf{x} \in X$

Which are useful inequalities? and how can we find them?
How can we use them?

Example: Pre-processing

- $X=\left\{(x, y): x \leq 999 y ; 0 \leq x \leq 5, y \in \mathbb{B}^{1}\right\}$

$$
x \leq 5 y
$$

- $X=\left\{x \in \mathbb{Z}_{+}^{n}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geq 72\right\}$

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq \frac{13}{11} x_{1}+\frac{20}{11} x_{2}+x_{3}+\frac{6}{11} x_{4} \geq \frac{72}{11}=6+\frac{6}{11} \\
& 2 x_{1}+2 x_{2}+x_{3}+x_{4} \geq 7
\end{aligned}
$$

- Capacitated facility location:

$$
\begin{array}{rr}
\sum_{i \in M} x_{i j} \leq b_{j} y_{j} \quad \forall j \in N & x_{i j} \leq b_{j} y_{j} \\
\sum_{j \in N} x_{i j}=a_{i} \quad \forall i \in M & x_{i j} \leq a_{i} \\
x_{i j} \geq 0, y_{j} \in B^{n} & x_{i j} \leq \min \left\{a_{i}, b_{j}\right\} y_{j}
\end{array}
$$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}_{+}^{n}, \quad P=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}, \quad A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}_{+}^{m},\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}\right\}$ columns of A

CG procedure to construct valid inequalities
1)

$$
\sum_{j=1}^{n} \mathbf{u a}_{j} x_{j} \leq \mathbf{u b}
$$

$$
\text { valid: } \mathbf{u} \geq \mathbf{0}
$$

2)

$$
\sum_{j=1}^{n}\left\lfloor\mathbf{u a}_{j}\right\rfloor x_{j} \leq \mathbf{u b}
$$

$$
\text { valid: } \mathbf{x} \geq \mathbf{0} \text { and } \sum\left\lfloor\mathbf{u a}_{j}\right\rfloor x_{j} \leq \sum \mathbf{u a}_{j} x_{j}
$$

3)

$$
\sum_{j=1}^{n}\left\lfloor\mathbf{u a}_{j}\right\rfloor x_{j} \leq\lfloor\mathbf{u b}\rfloor
$$

$$
\text { valid for } X \text { since } \mathbf{x} \in \mathbb{Z}^{n}
$$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}_{+}^{n}$
- a family of valid inequalities $\mathcal{F}: \mathbf{a}^{\top} \mathbf{x} \leq b,(\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

$$
\begin{array}{ll}
\text { Init.: } & t=0, P^{0}=P \\
\text { Iter. } t: & \text { Solve } \bar{z}^{t}=\max \left\{\mathbf{c}^{T} \mathbf{x}: \mathbf{x} \in P^{t}\right\} \\
& \text { let } \mathbf{x}^{t} \text { be an optimal solution } \\
& \text { if } \mathbf{x}^{t} \in \mathbb{Z}^{n} \text { stop, } \mathbf{x}^{t} \text { is opt to the IP } \\
\text { if } \mathbf{x}^{t} \notin \mathbb{Z}^{n} \text { solve separation problem for } \mathbf{x}^{t} \text { and } \mathcal{F} \\
& \text { if }\left(\mathbf{a}^{t}, b^{t}\right) \text { is found with } \mathbf{a}^{t} \mathbf{x}^{t}>b^{t} \text { that cuts off } x^{t} \\
& P^{t+1}=P \cap\left\{\mathbf{x}: \mathbf{a}^{i} \mathbf{x} \leq b^{i}, i=1, \ldots, t\right\}
\end{array}
$$

else stop (P^{t} is in any case an improved formulation)

Gomory's fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts

- $\max \left\{\mathbf{c}^{T} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}$
- Solve LPR to optimality

$$
\left[\begin{array}{c:c:c:c}
I & \bar{A}_{N}=A_{B}^{-1} A_{N} & 0 & \bar{b} \\
\hdashline & & \begin{array}{l}
x_{u}=\bar{b}_{u}-\sum_{j \in N} \bar{a}_{u j} x_{j}, \quad u \in B \\
\hdashline \bar{c}_{N}(\leq 0)
\end{array} & z=\bar{d}+\sum_{j \in N} \bar{c}_{j} x_{j}
\end{array}\right.
$$

- If basic optimal solution to LPR is not integer then \exists some row $u: \bar{b}_{u} \notin \mathbb{Z}^{1}$. The Chvatál-Gomory cut applied to this row is:

$$
x_{B_{u}}+\sum_{j \in N}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leq\left\lfloor\bar{b}_{u}\right\rfloor
$$

(B_{u} is the index in the basis B corresponding to the row u)

- Eliminating $x_{B_{u}}=\bar{b}_{u}-\sum_{j \in N} \bar{a}_{u j} x_{j}$ in the CG cut we obtain:

$$
\begin{aligned}
& \sum_{j \in N}(\underbrace{\bar{a}_{u j}-\left\lfloor\bar{a}_{u j}\right\rfloor}_{0 \leq f_{u j}<1}) x_{j} \geq \underbrace{\bar{b}_{u}-\left\lfloor\bar{b}_{u}\right\rfloor}_{0<f_{u}<1} \\
& \sum_{j \in N} f_{u j} x_{j} \geq f_{u}
\end{aligned}
$$

$f_{u}>0$ or else u would not be row of fractional solution. It implies that x^{*} in which $x_{N}^{*}=0$ is cut out!

- Moreover: when x is integer, since all coefficients in the CG cut are integer the slack variable of the cut is also integer:

$$
s=-f_{u}+\sum_{j \in N} f_{u j} x_{j}
$$

(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

$$
\begin{aligned}
& \max x_{1}+4 x_{2} \\
& x_{1}+6 x_{2} \leq 18 \\
& x_{1} \leq 3 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

$$
x_{2}=5 / 2, x_{1}=3
$$

Optimum, not integer

- CG cut $\sum_{j \in N} f_{u j} x_{j} \geq f_{u} \rightsquigarrow \frac{1}{6} x_{3}+\frac{5}{6} x_{4} \geq \frac{1}{2}$
- Let's see that it leaves out x^{*} : from the CG proof:

$$
\begin{aligned}
1 / 6\left(x_{1}+6 x_{2}\right. & \leq 18) \\
5 / 6\left(x_{1}\right. & \leq 3) \\
\hline x_{1}+x_{2} & \leq 3+5 / 2=5.5
\end{aligned}
$$

since x_{1}, x_{2} are integer $x_{1}+x_{2} \leq 5$

- Let's see how it looks in the space of the original variables: from the first tableau:

$$
\begin{aligned}
& x_{3}=18-6 x_{2}-x_{1} \\
& x_{4}=3-x_{1} \\
& \frac{1}{6}\left(18-6 x_{2}-x_{1}\right)+\frac{5}{6}\left(3-x_{1}\right) \geq \frac{1}{2} \quad \rightsquigarrow \quad x_{1}+x_{2} \leq 5
\end{aligned}
$$

- Graphically:

- Let's continue:

We need to apply dual-simplex (will always be the case, why?)
ratio rule: $\min \left\{\left|\frac{c_{j}}{a_{i j}}\right|: a_{i j}<0\right\}$

- After the dual simplex iteration:

- In the space of the original variables:

$$
\begin{array}{r}
4\left(18-x_{1}-6 x_{2}\right)+\left(5-x_{1}-x_{2}\right) \geq 2 \\
x_{1}+5 x_{2} \leq 15
\end{array}
$$

We can choose any of the three rows.
Let's take the third: CG cut:
$\frac{4}{5} x_{3}+\frac{1}{5} x_{5} \geq \frac{2}{5}$

