DM545
 Linear and Integer Programming

Lecture 13
 Branch and Bound

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Branch and Bound
2. Preprocessing

Exam

- Tilladt Håndscanner/digital pen og ordbogsprogrammet fra ordbogen.com
- Ikke tilladt at anvende digitalt kamera eller webcam o. lign. metoder for at digitalisere sin besvarelse
- Du afleverer efter fristen og kun en gang
- Exam Monitor er et lille program, som logger, hvilke programmer du afvikler på din computer under eksamen, samtidig med at din skærm optages. https://em.sdu.dk/
- Internet

Internet er ikke tilladt ved eksamener på NAT, men undtagelsesvis til denne eksamen er det tilladt, at benytte følgende webside
http: // www. imada. sdu. dk/ ~marco/ DM545/ og siderne linket derfra. Det er ikke tilladt at benytte andre sider

- Vejledning og templates snart tilgænglig fra kurset web siden ved afsnittet Assessment
- Kom vel forberedet, bring noget at drikke og spise
- Two weeks left
- This week: two lectures + joint training class on Wednesday
- Next week: two exercise classes + one lecture.
- Question time? Thursday 31st at 9:00?

Outline

1. Branch and Bound
[^0]
Branch and Bound

- Consider the problem $z=\max \left\{c^{T} x: x \in S\right\}$
- Divide and conquer: let $S=S_{1} \cup \ldots \cup S_{k}$ be a decomposition of S into smaller sets, and let $z^{k}=\max \left\{c^{\top} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$. Then $z=\max _{k} z^{k}$

Branch and Bound

- Consider the problem $z=\max \left\{c^{T} x: x \in S\right\}$
- Divide and conquer: let $S=S_{1} \cup \ldots \cup S_{k}$ be a decomposition of S into smaller sets, and let $z^{k}=\max \left\{c^{\top} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$. Then $z=\max _{k} z^{k}$
For instance if $S \subseteq\{0,1\}^{3}$ the enumeration tree is:

Bounding

Let's consider a maximization problem (gurobi's default is minimization)

- Let \bar{z}^{k} be an upper bound on z^{k} (dual bound)
- Let \underline{z}^{k} be a lower bound on z^{k} (primal bound)
- $\left(\underline{z}^{k} \leq z^{k} \leq \bar{z}^{k}\right)$

Bounding

Let's consider a maximization problem (gurobi's default is minimization)

- Let \bar{z}^{k} be an upper bound on z^{k} (dual bound)
- Let \underline{z}^{k} be a lower bound on z^{k} (primal bound)
- $\left(\underline{z}^{k} \leq z^{k} \leq \bar{z}^{k}\right)$
- $\underline{z}=$

Bounding

Let's consider a maximization problem (gurobi's default is minimization)

- Let \bar{z}^{k} be an upper bound on z^{k} (dual bound)
- Let \underline{z}^{k} be a lower bound on z^{k} (primal bound)
- $\left(\underline{z}^{k} \leq z^{k} \leq \bar{z}^{k}\right)$
- $\underline{z}=\max _{k} \underline{z}^{k}$ is a lower bound on z
- $\bar{z}=$

Bounding

Let's consider a maximization problem (gurobi's default is minimization)

- Let \bar{z}^{k} be an upper bound on z^{k} (dual bound)
- Let \underline{z}^{k} be a lower bound on z^{k} (primal bound)
- $\left(\underline{z}^{k} \leq z^{k} \leq \bar{z}^{k}\right)$
- $\underline{z}=\max _{k} \underline{z}^{k}$ is a lower bound on z
- $\bar{z}=\max _{k} \bar{z}^{k}$ is an upper bound on z

Pruning

Branch and Bound

 Preprocessing

$$
\begin{aligned}
& \bar{z}= \\
& \underline{z}=
\end{aligned}
$$

Pruning

$$
\begin{aligned}
& \bar{z}=25 \\
& \underline{z}=20 \\
& \text { pruned by optimality }
\end{aligned}
$$

Pruning

$$
\begin{aligned}
& \bar{z}=25 \\
& \underline{z}=20 \\
& \text { pruned by optimality }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{z}= \\
& \underline{z}=
\end{aligned}
$$

Pruning

$$
\begin{aligned}
& \bar{z}=25 \\
& \underline{z}=20 \\
& \text { pruned by optimality } \\
& \bar{z}=26 \\
& \underline{z}=21 \\
& \text { pruned by bounding }
\end{aligned}
$$

Pruning

$$
\begin{aligned}
& \bar{z}=25 \\
& \underline{z}=20 \\
& \text { pruned by optimality } \\
& \\
& \bar{z}=26 \\
& \underline{z}=21 \\
& \text { pruned by bounding }
\end{aligned}
$$

$\bar{z}=$
$\underline{z}=$

Pruning

$$
\begin{aligned}
& \bar{z}=25 \\
& z=20 \\
& \text { pruned by optimality } \\
& \bar{z}=26 \\
& \underline{z}=21 \\
& \text { pruned by bounding } \\
& \\
& \bar{z}=37 \\
& \underline{z}=13 \\
& \text { nothing to prune }
\end{aligned}
$$

Pruning

$$
\begin{aligned}
& \bar{z}=26 \\
& \underline{z}=14 \\
& \text { pruned by infeasibility }
\end{aligned}
$$

Example

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}+4 x_{2} & \leq 8 \\
4 x_{1}+x_{2} & \leq 8 \\
x_{1}, x_{2} & \geq 0, \text { integer }
\end{aligned}
$$

- Solve LP

Example

$$
\begin{aligned}
\max x_{1}+2 x_{2} & \\
x_{1}+4 x_{2} & \leq 8 \\
4 x_{1}+x_{2} & \leq 8 \\
x_{1}, x_{2} & \geq 0, \text { integer }
\end{aligned}
$$

- Solve LP

- continuing

$x_{2}=1+3 / 5=1.6$
$x_{1}=8 / 5$
The optimal solution will not be more than $2+14 / 5=4.8$
- continuing

- Both variables are fractional, we pick one of the two:
$x_{2}=1+3 / 5=1.6$
$x_{1}=8 / 5$
The optimal solution will not be more than $2+14 / 5=4.8$

- continuing

$$
\begin{aligned}
& x_{2}=1+3 / 5=1.6 \\
& x_{1}=8 / 5
\end{aligned}
$$

The optimal solution will not be more than $2+14 / 5=4.8$

- Both variables are fractional, we pick one of the two:

- Let's consider first the left branch:
- Let's consider first the left branch:

- Let's consider first the left branch:

- Let's consider first the left branch:

always a b term negative after branching:

$$
\begin{aligned}
& b_{1}=\left\lfloor\bar{b}_{3}\right\rfloor \\
& \bar{b}_{1}=\left\lfloor\bar{b}_{3}\right\rfloor-b_{3}<0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dual simplex: } \\
& \min _{j}\left\{\left|\frac{c_{j}}{a_{i j}}\right|: a_{i j}<0\right\}
\end{aligned}
$$

- Let's branch again

- Let's branch again

- Let's branch again

We have three open problems. Which one we choose next?
Let's take A.

continuing we find:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=2 \\
& O P T=4
\end{aligned}
$$

The final tree:

The optimal solution is 4 .

Pruning

Pruning:

1. by optimality: $z^{k}=\max \left\{c^{T} x: x \in S^{k}\right\}$
2. by bound $\bar{z}^{k} \leq \underline{z}$

Example:

3. by infeasibility $S^{k}=\emptyset$

B\&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

B\&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leq\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geq\left\lceil\bar{x}_{j}\right\rceil\right\}
\end{aligned}
$$

thus the current optimum is not feasible either in S_{1} or in S_{2}.

B\&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leq\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geq\left\lceil\bar{x}_{j}\right\rceil\right\}
\end{aligned}
$$

thus the current optimum is not feasible either in S_{1} or in S_{2}. Which variable to choose?
Eg: Most fractional variable $\arg \max _{j \in C} \min \left\{f_{j}, 1-f_{j}\right\}$

B\&B Components

Bounding:

1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leq\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geq\left\lceil\bar{x}_{j}\right\rceil\right\}
\end{aligned}
$$

thus the current optimum is not feasible either in S_{1} or in S_{2}.
Which variable to choose?
Eg: Most fractional variable $\arg \max _{j \in C} \min \left\{f_{j}, 1-f_{j}\right\}$
Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: $\bar{z}^{s}=\max _{k} \bar{z}^{k}$ or largest lower - to die fast)
- Mixed strategies

Reoptimizing: dual simplex
Updating the Incumbent: when new best feasible solution is found:

$$
\underline{z}=\max \{\underline{z}, 4\}
$$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds
redundant constraints
variable fixing: eg: $\max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\}$
fix $x_{j}=l_{j}$ if $c_{j}<0$ and $a_{i j}>0$ for all i
fix $x_{j}=u_{j}$ if $c_{j}>0$ and $a_{i j}<0$ for all i

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds
redundant constraints
variable fixing: eg: $\max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\}$
fix $x_{j}=l_{j}$ if $c_{j}<0$ and $a_{i j}>0$ for all i
fix $x_{j}=u_{j}$ if $c_{j}>0$ and $a_{i j}<0$ for all i
- Priorities: establish the next variable to branch

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds
redundant constraints
variable fixing: eg: $\max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\}$

$$
\begin{aligned}
& \text { fix } x_{j}=l_{j} \text { if } c_{j}<0 \text { and } a_{i j}>0 \text { for all } i \\
& \text { fix } x_{j}=u_{j} \text { if } c_{j}>0 \text { and } a_{i j}<0 \text { for all } i
\end{aligned}
$$

- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

$$
\sum_{j=1}^{k} x_{j}=1 \quad x_{j} \in\{0,1\}
$$

instead of: $S_{0}=S \cap\left\{\mathbf{x}: x_{j}=0\right\}$ and $S_{1}=S \cap\left\{\mathbf{x}: x_{j}=1\right\}$
$\left\{\mathbf{x}: x_{j}=0\right\}$ leaves $k-1$ possibilities
$\left\{\mathbf{x}: x_{j}=1\right\}$ leaves only 1 possibility
hence tree unbalanced
here: $S_{1}=S \cap\left\{\mathbf{x}: x_{j_{i}}=0, i=1 . . r\right\}$ and $S_{2}=S \cap\left\{x: x_{j i}=0, i=r+1, . ., k\right\}$, $r=\min \left\{t: \sum_{i=1}^{t} x_{j_{i}}^{*} \geq \frac{1}{2}\right\}$

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)
3. $\bar{z}_{j}^{\downarrow}, \bar{z}_{j}^{\uparrow}$ (dual bound of down and up branch)

$$
j^{*}=\arg \min _{j \in C} \max \left\{\bar{z}_{j}^{\downarrow}, \bar{z}_{j}^{\uparrow}\right\}
$$

ie, choose variable with largest decrease of dual bound, eg UB for max

There are four common reasons because integer programs can require a significant amount of solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.
2. There is lack of progress in the best integer solution, i.e., the upper bound.
3. There is lack of progress in the best lower bound.
4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.

There are four common reasons because integer programs can require a significant amount of solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.
2. There is lack of progress in the best integer solution, i.e., the upper bound.
3. There is lack of progress in the best lower bound.
4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

$$
\text { gap }=\frac{\mid \text { Primal bound }- \text { Dual bound } \mid}{\text { Primal bound }+\epsilon} \cdot 100
$$

- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B\&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Relative Optimality Gap

In CPLEX:

$$
\text { gap }=\frac{\mid \text { best dual bound }- \text { best integer } \mid}{\mid \text { best integer }+10^{-11} \mid}
$$

In SCIP and MIPLIB standard:

$$
\text { gap }=\frac{p b-d b}{\inf \{|z|, z \in[d b, p b]\}} \cdot 100 \quad \text { for a minimization problem }
$$

(if $p b \geq 0$ and $d b \geq 0$ then $\frac{p b-d b}{d b}$)
if $d b=p b=0$ then gap $=0$
if no feasible sol found or $d b \leq 0 \leq p b$ then the gap is not computed.

Last standard avoids problem of non decreasing gap if we go through zero

3186	2520	-666.6217	4096	956.6330	-667.2010	1313338	169.74%
3226	2560	-666.6205	4097	956.6330	-667.2010	1323797	169.74%
3266	2600	-666.6201	4095	956.6330	-667.2010	1335602	169.74%
Elapsed real time	$=2801.61$	sec.	(tree size $=77.54$	MB, solutions $=2$)			
$*$	$3324+$	2656			-125.5775	-667.2010	1363079
3334	2668	-666.5811	4052	-125.5775	-667.2010	1370748	431.31%
3380	2714	-666.5799	4017	-125.5775	-667.2010	1388391	431.31%
3422	2756	-666.5791	4011	-125.5775	-667.2010	1403440	431.31%

Advanced Techniques

We did not treat:

- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

Outline

1. Branch and Bound

2. Preprocessing

Preprocessing rules

Consider $S=\left\{\mathbf{x}: a_{0} x_{0}+\sum_{j=1}^{n} a_{j} x_{j} \leq b, l_{j} \leq x_{j} \leq u_{j}, j=0 . . n\right\}$

- Bounds on variables.

If $a_{0}>0$ then:

$$
x_{0} \leq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

and if $a_{0}<0$ then

$$
x_{0} \geq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

Preprocessing rules

Consider $S=\left\{\mathbf{x}: a_{0} x_{0}+\sum_{j=1}^{n} a_{j} x_{j} \leq b, l_{j} \leq x_{j} \leq u_{j}, j=0 . . n\right\}$

- Bounds on variables.

If $a_{0}>0$ then:

$$
x_{0} \leq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

and if $a_{0}<0$ then

$$
x_{0} \geq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

- Redundancy. The constraint $\sum_{j=0}^{n} a_{j} x_{j} \leq b$ is redundant if

$$
\sum_{j: a_{j}>0} a_{j} u_{j}+\sum_{j: a_{j}<0} a_{j} l_{j} \leq b
$$

- Infeasibility: $S=\emptyset$ if (swapping lower and upper bounds from previous case)

$$
\sum_{j: a_{j}>0} a_{j} l_{j}+\sum_{j: a_{j}<0} a_{j} u_{j}>b
$$

- Infeasibility: $S=\emptyset$ if (swapping lower and upper bounds from previous case)

$$
\sum_{j: a_{j}>0} a_{j} l_{j}+\sum_{j: a_{j}<0} a_{j} u_{j}>b
$$

- Variable fixing. For a max problem in the form

$$
\begin{aligned}
& \quad \max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\} \\
& \text { if } \forall i=1 . . m: a_{i j} \geq 0, c_{j}<0 \text { then fix } x_{j}=I_{j} \\
& \text { if } \forall i=1 . . m: a_{i j}<0, c_{j}>0 \text { then fix } x_{j}=u_{j}
\end{aligned}
$$

- Infeasibility: $S=\emptyset$ if (swapping lower and upper bounds from previous case)

$$
\sum_{j: a_{j}>0} a_{j} l_{j}+\sum_{j: a_{j}<0} a_{j} u_{j}>b
$$

- Variable fixing. For a max problem in the form

$$
\begin{aligned}
& \quad \max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\} \\
& \text { if } \forall i=1 . . m: a_{i j} \geq 0, c_{j}<0 \text { then fix } x_{j}=I_{j} \\
& \text { if } \forall i=1 . . m: a_{i j}<0, c_{j}>0 \text { then fix } x_{j}=u_{j}
\end{aligned}
$$

- Integer variables:

$$
\left\lceil\ell_{j}\right\rceil \leq x_{j} \leq\left\lfloor u_{j}\right\rfloor
$$

- Infeasibility: $S=\emptyset$ if (swapping lower and upper bounds from previous case)

$$
\sum_{j: a_{j}>0} a_{j} l_{j}+\sum_{j: a_{j}<0} a_{j} u_{j}>b
$$

- Variable fixing. For a max problem in the form

$$
\begin{aligned}
& \quad \max \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{I} \leq \mathbf{x} \leq \mathbf{u}\right\} \\
& \text { if } \forall i=1 . m: a_{i j} \geq 0, c_{j}<0 \text { then fix } x_{j}=I_{j} \\
& \text { if } \forall i=1 . . m: a_{i j}<0, c_{j}>0 \text { then fix } x_{j}=u_{j}
\end{aligned}
$$

- Integer variables:

$$
\left\lceil\ell_{j}\right\rceil \leq x_{j} \leq\left\lfloor u_{j}\right\rfloor
$$

- Binary variables. Probing: add a constraint, eg, $x_{2}=0$ and check what happens

Example

$$
\begin{aligned}
& \max 2 x_{1}+x_{2}-x_{3} \\
& \text { R1: } 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
& \text { R2 : } 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
& \text { R3: } x_{1}+x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 3 \\
& 0 \leq x_{2} \leq 1 \\
& \quad x_{3} \geq 1
\end{aligned}
$$

Example

$$
\begin{aligned}
& \max 2 x_{1}+x_{2}-x_{3} \\
& \mathrm{R} 1: 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
& \mathrm{R} 2: 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
& \mathrm{R} 3: x_{1}+x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 3 \\
& 0 \leq x_{2} \leq 1 \\
& \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathrm{R} 1: 5 x_{1} & \leq 15+2 x_{2}-8 x_{3} \leq 15+2 \cdot \overbrace{1}^{u_{2}}-8 \cdot \overbrace{1}^{/_{3}}=9 & & \rightsquigarrow x_{1} \leq 9 / 5 \\
8 x_{3} & \leq 15+2 x_{2}-5 x_{1} \leq 15+2 \cdot 1-5 \cdot 0=17 & \rightsquigarrow x_{3} \leq 17 / 8 \\
2 x_{2} & \geq 5 x_{1}+8 x_{3}-15 \geq 5 \cdot 0+8 \cdot 1=-7 & & \rightsquigarrow x_{2} \geq-7 / 2, x_{2} \geq 0
\end{array}
$$

$$
\text { R2 : } 8 x_{1} \geq 9-3 x_{2}+x_{3} \geq 9-3+1=7
$$

$$
\rightsquigarrow x_{1} \geq 7 / 8
$$

$$
\text { R1 }: 8 x_{3} \geq 15+2 x_{2}-5 x_{1} \leq 15+2-5 \cdot 7 / 8=101 / 8
$$

$$
\rightsquigarrow x_{3} \leq 101 / 64
$$

R3 : $x_{1}+x_{2}+x_{3} \leq 9 / 5+1+101 / 64<6 \quad$ Hence R3 is redundant

Example

$$
\begin{aligned}
& \max 2 x_{1}+x_{2}-x_{3} \\
& \text { R1: } 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
& \text { R2 : } 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
& \text { R3: } x_{1}+x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 3 \\
& 0 \leq x_{2} \leq 1 \\
& \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R} 1: 5 x_{1} & \leq 15+2 x_{2}-8 x_{3} \leq 15+2 \cdot \overbrace{1}^{\mu_{2}}-8 \cdot \overbrace{1}^{/_{3}}=9 & & \rightsquigarrow x_{1} \leq 9 / 5 \\
8 x_{3} & \leq 15+2 x_{2}-5 x_{1} \leq 15+2 \cdot 1-5 \cdot 0=17 & & \rightsquigarrow x_{3} \leq 17 / 8 \\
2 x_{2} & \geq 5 x_{1}+8 x_{3}-15 \geq 5 \cdot 0+8 \cdot 1=-7 & & \rightsquigarrow x_{2} \geq-7 / 2, x_{2} \geq 0
\end{aligned}
$$

Example

$$
\begin{aligned}
& \max 2 x_{1}+x_{2}-x_{3} \\
& \text { R1: } 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
& \text { R2 : } 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
& \text { R3: } x_{1}+x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 3 \\
& 0 \leq x_{2} \leq 1 \\
& \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathrm{R} 1: 5 x_{1} & \leq 15+2 x_{2}-8 x_{3} \leq 15+2 \cdot \overbrace{1}^{u_{2}}-8 \cdot \overbrace{1}^{l_{3}}=9 & & \rightsquigarrow x_{1} \leq 9 / 5 \\
8 x_{3} & \leq 15+2 x_{2}-5 x_{1} \leq 15+2 \cdot 1-5 \cdot 0=17 & \rightsquigarrow x_{3} \leq 17 / 8 \\
2 x_{2} & \geq 5 x_{1}+8 x_{3}-15 \geq 5 \cdot 0+8 \cdot 1=-7 & & \rightsquigarrow x_{2} \geq-7 / 2, x_{2} \geq 0
\end{array}
$$

R2: $8 x_{1} \geq 9-3 x_{2}+x_{3} \geq 9-3+1=7$
R1: $8 x_{3} \geq 15+2 x_{2}-5 x_{1} \leq 15+2-5 \cdot 7 / 8=101 / 8$

$$
\begin{aligned}
& \rightsquigarrow x_{1} \geq 7 / 8 \\
& \rightsquigarrow x_{3} \leq 101 / 64
\end{aligned}
$$

Example

$$
\begin{aligned}
& \max 2 x_{1}+x_{2}-x_{3} \\
& \mathrm{R} 1: 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
& \mathrm{R} 2: 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
& \mathrm{R} 3: x_{1}+x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 3 \\
& 0 \leq x_{2} \leq 1 \\
& \quad x_{3} \geq 1
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathrm{R} 1: 5 x_{1} & \leq 15+2 x_{2}-8 x_{3} \leq 15+2 \cdot \overbrace{1}^{\mu_{2}}-8 \cdot \overbrace{1}^{/_{3}}=9 & & \rightsquigarrow x_{1} \leq 9 / 5 \\
8 x_{3} & \leq 15+2 x_{2}-5 x_{1} \leq 15+2 \cdot 1-5 \cdot 0=17 & \rightsquigarrow x_{3} \leq 17 / 8 \\
2 x_{2} & \geq 5 x_{1}+8 x_{3}-15 \geq 5 \cdot 0+8 \cdot 1=-7 & & \rightsquigarrow x_{2} \geq-7 / 2, x_{2} \geq 0
\end{array}
$$

$$
\mathrm{R} 2: 8 x_{1} \geq 9-3 x_{2}+x_{3} \geq 9-3+1=7
$$

$$
\rightsquigarrow x_{1} \geq 7 / 8
$$

$$
\text { R1 }: 8 x_{3} \geq 15+2 x_{2}-5 x_{1} \leq 15+2-5 \cdot 7 / 8=101 / 8
$$

$$
\rightsquigarrow x_{3} \leq 101 / 64
$$

R3 : $x_{1}+x_{2}+x_{3} \leq 9 / 5+1+101 / 64<6 \quad$ Hence R3 is redundant

Example

Branch and Bound Preprocessing

Example

$$
\begin{aligned}
\max & 2 x_{1}+x_{2}-x_{3} \\
\mathrm{R} 1: & 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
\mathrm{R} 2: & 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
7 & \geq \leq x_{1} \leq 9 / 5 \\
& 0 \leq x_{2} \leq 1 \\
& 1 \leq x_{3} \leq 101 / 64
\end{aligned}
$$

Increasing x_{2} makes constraints satisfied $\rightsquigarrow x_{2}=1$
Decreasing x_{3} makes constraints satisfied $\rightsquigarrow x_{3}=1$

Example

$$
\begin{aligned}
\max & 2 x_{1}+x_{2}-x_{3} \\
\mathrm{R} 1: & 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
\mathrm{R} 2: & 8 x_{1}+3 x_{2}-x_{3} \geq 9 \\
7 & \geq \leq x_{1} \leq 9 / 5 \\
& 0 \leq x_{2} \leq 1 \\
1 & \leq x_{3} \leq 101 / 64
\end{aligned}
$$

Increasing x_{2} makes constraints satisfied $\rightsquigarrow x_{2}=1$
Decreasing x_{3} makes constraints satisfied $\rightsquigarrow x_{3}=1$
We are left with:

$$
\max \left\{2 x_{1}: 7 / 8 \leq x_{1} \leq 9 / 5\right\}
$$

Preprocessing for Set Covering/Partitioning

1. if $e_{i}^{T} A=0$ then the i th row can never be satisfied

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\\
\hdashline 0 \cdots \\
\hdashline \cdots \\
\hdashline \cdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Preprocessing for Set Covering/Partitioning

1. if $e_{i}^{T} A=0$ then the i th row can never be satisfied

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\\
\hdashline 0 \cdots \\
\hdashline \cdots \\
\hdashline \cdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

2. if $e_{i}^{T} A=e_{k}$ then $x_{k}=1$ in every feasible solution

Preprocessing for Set Covering/Partitioning

1. if $e_{i}^{T} A=0$ then the i th row can never be satisfied

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\\
\hdashline 0 \cdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\hdashline \cdots \\
\vdots \\
0 \\
0
\end{array}\right]
$$

2. if $e_{i}^{T} A=e_{k}$ then $x_{k}=1$ in every feasible solution

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{llll}
& \vdots \\
\hdashline 0 & 1 & \\
\hdashline & \cdots & 1 & \\
\hdashline
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

In SPP can remove all rows t with $a_{t k}=1$ and set $x_{j}=0$ (ie, remove cols) for all cols that cover t
3. if $e_{t}^{T} A \geq e_{p}^{T} A$ then we can remove row t, row p dominates row t (by covering p we cover t)
$t\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & & 1\end{array}\right]$
3. if $e_{t}^{T} A \geq e_{p}^{T} A$ then we can remove row t, row p dominates row t (by covering p we cover t)

In SPP we can remove all cols $j: a_{t j}=1, a_{p j}=0$
4. if $\sum_{j \in S} A e_{j}=A e_{k}$ and $\sum_{j \in S} c_{j} \leq c_{k}$ then we can cover the rows by $A e_{k}$ more cheaply with S and set $x_{k}=0$
(Note, we cannot remove S if $\sum_{j \in S} c_{j} \geq c_{k}$)

$\begin{array}{lll}1 & 1 \\ 1 & \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 & \\ 1 & \\ 0 & 0\end{array}$	11 $1!$ $1!$ $1!$ 0 1 1 $0!$

Summary

1. Branch and Bound
2. Preprocessing

[^0]: 2. Preprocessing
