
DM545

Linear and Integer Programming

Lecture 13
Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Branch and Bound
PreprocessingOutline

1. Branch and Bound

2. Preprocessing

2

Branch and Bound
PreprocessingExam

• Tilladt Håndscanner/digital pen og ordbogsprogrammet fra ordbogen.com

• Ikke tilladt at anvende digitalt kamera eller webcam o. lign. metoder for at digitalisere sin
besvarelse

• Du afleverer efter fristen og kun en gang

• Exam Monitor er et lille program, som logger, hvilke programmer du afvikler på din computer
under eksamen, samtidig med at din skærm optages. https://em.sdu.dk/

• Internet
Internet er ikke tilladt ved eksamener på NAT, men undtagelsesvis til denne eksamen
er det tilladt, at benytte følgende webside
http: // www. imada. sdu. dk/ ~marco/ DM545/ og siderne linket derfra. Det er
ikke tilladt at benytte andre sider

• Vejledning og templates snart tilgænglig fra kurset web siden ved afsnittet Assessment

• Kom vel forberedet, bring noget at drikke og spise

3

https://em.sdu.dk/
http://www.imada.sdu.dk/~marco/DM545/

Branch and Bound
PreprocessingTo come

• Two weeks left

• This week: two lectures + joint training class on Wednesday

• Next week: two exercise classes + one lecture.

• Question time? Thursday 31st at 9:00?

4

Branch and Bound
PreprocessingOutline

1. Branch and Bound

2. Preprocessing

5

Branch and Bound
PreprocessingBranch and Bound

• Consider the problem z = max{cT x : x ∈ S}

• Divide and conquer: let S = S1 ∪ . . . ∪ Sk be a decomposition of S into smaller sets, and let
zk = max{cT x : x ∈ Sk} for k = 1, . . . ,K . Then z = maxk zk

For instance if S ⊆ {0, 1}3 the enumeration tree is:

S

S0

S00

S000

x3 = 0

S001

x2 = 0

S01

S010 S011

x1 = 0

S1

S10

S100 S101

S11

S110 S111

x1 = 1

6

Branch and Bound
PreprocessingBranch and Bound

• Consider the problem z = max{cT x : x ∈ S}

• Divide and conquer: let S = S1 ∪ . . . ∪ Sk be a decomposition of S into smaller sets, and let
zk = max{cT x : x ∈ Sk} for k = 1, . . . ,K . Then z = maxk zk

For instance if S ⊆ {0, 1}3 the enumeration tree is:

S

S0

S00

S000

x3 = 0

S001

x2 = 0

S01

S010 S011

x1 = 0

S1

S10

S100 S101

S11

S110 S111

x1 = 1

6

Branch and Bound
PreprocessingBounding

Let’s consider a maximization problem (gurobi’s default is minimization)

• Let zk be an upper bound on zk (dual bound)

• Let zk be a lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z = maxk zk is a lower bound on z

• z = maxk zk is an upper bound on z

7

Branch and Bound
PreprocessingBounding

Let’s consider a maximization problem (gurobi’s default is minimization)

• Let zk be an upper bound on zk (dual bound)

• Let zk be a lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z =

maxk zk is a lower bound on z

• z = maxk zk is an upper bound on z

7

Branch and Bound
PreprocessingBounding

Let’s consider a maximization problem (gurobi’s default is minimization)

• Let zk be an upper bound on zk (dual bound)

• Let zk be a lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z = maxk zk is a lower bound on z

• z =

maxk zk is an upper bound on z

7

Branch and Bound
PreprocessingBounding

Let’s consider a maximization problem (gurobi’s default is minimization)

• Let zk be an upper bound on zk (dual bound)

• Let zk be a lower bound on zk (primal bound)

• (zk ≤ zk ≤ zk)

• z = maxk zk is a lower bound on z

• z = maxk zk is an upper bound on z

7

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z =

25

z =

20
pruned by optimality

27
13

20
18

26
21

z =

26

z =

21
pruned by bounding

40
−∞

24
13

37
−∞

z =

37

z =

13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z =

26

z =

21
pruned by bounding

40
−∞

24
13

37
−∞

z =

37

z =

13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z =

26

z =

21
pruned by bounding

40
−∞

24
13

37
−∞

z =

37

z =

13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z = 26
z = 21
pruned by bounding

40
−∞

24
13

37
−∞

z =

37

z =

13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z = 26
z = 21
pruned by bounding

40
−∞

24
13

37
−∞

z =

37

z =

13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z = 26
z = 21
pruned by bounding

40
−∞

24
13

37
−∞

z = 37
z = 13
nothing to prune

8

Branch and Bound
PreprocessingPruning

27
13

26
14 infeas.

z = 26
z = 14
pruned by infeasibility

9

Branch and Bound
PreprocessingExample

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1

x2

• Solve LP
| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+---|
| | 1 | 4 | 1 | 0 | 0 | 8 |
| | 4 | 1 | 0 | 1 | 0 | 8 |
|---+----+----+----+----+----+---|
| | 1 | 2 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+------+----+------+----+----|
| I’=I-II’ | 0 | 15/4 | 1 | -1/4 | 0 | 6 |
| II’=1/4II | 1 | 1/4 | 0 | 1/4 | 0 | 2 |
|--------------+----+------+----+------+----+----|
| III’=III-II’ | 0 | 7/4 | 0 | -1/4 | 0 | -2 |

10

Branch and Bound
PreprocessingExample

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1

x2

• Solve LP
| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+---|
| | 1 | 4 | 1 | 0 | 0 | 8 |
| | 4 | 1 | 0 | 1 | 0 | 8 |
|---+----+----+----+----+----+---|
| | 1 | 2 | 0 | 0 | 1 | 0 |
| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+------+----+------+----+----|
| I’=I-II’ | 0 | 15/4 | 1 | -1/4 | 0 | 6 |
| II’=1/4II | 1 | 1/4 | 0 | 1/4 | 0 | 2 |
|--------------+----+------+----+------+----+----|
| III’=III-II’ | 0 | 7/4 | 0 | -1/4 | 0 | -2 |

10

Branch and Bound
Preprocessing

• continuing

| | x1 | x2 | x3 | x4 | -z | b |
|----------------+----+----+-------+-------+----+---------|
| I’=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |
| II’=II-1/4I’ | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |
|----------------+----+----+-------+-------+----+---------|
| III’=III-7/4I’ | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution will not
be more than 2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1 = 1
x2

x1

11

Branch and Bound
Preprocessing

• continuing

| | x1 | x2 | x3 | x4 | -z | b |
|----------------+----+----+-------+-------+----+---------|
| I’=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |
| II’=II-1/4I’ | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |
|----------------+----+----+-------+-------+----+---------|
| III’=III-7/4I’ | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution will not
be more than 2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1 = 1
x2

x1

11

Branch and Bound
Preprocessing

• continuing

| | x1 | x2 | x3 | x4 | -z | b |
|----------------+----+----+-------+-------+----+---------|
| I’=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |
| II’=II-1/4I’ | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |
|----------------+----+----+-------+-------+----+---------|
| III’=III-7/4I’ | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution will not
be more than 2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1 = 1
x2

x1

11

Branch and Bound
Preprocessing

• Let’s consider first the left branch:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+-------+-------+----+----+-------|
	1	0	0	0	1	0	1
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
---+----+----+-------+-------+----+----+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
I’=I-III	0	0	1/15	-4/15	1	0	-9/15
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
----------+----+----+-------+-------+----+---+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|-------------+----+----+--------+----+-------+---+--------|
I’=-15/4I	0	0	-1/4	1	-15/4	0	9/4
II’=II-1/4I	0	1	15/60	0	-1/4	0	7/4
III’=III+I	1	0	0	0	1	0	1
-------------+----+----+--------+----+-------+---+--------							
	0	0	-37/60	0	-9/4	1	-90/20

always a b term negative
after branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cjaij | : aij < 0}

12

Branch and Bound
Preprocessing

• Let’s consider first the left branch:
| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+-------+-------+----+----+-------|
	1	0	0	0	1	0	1
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
---+----+----+-------+-------+----+----+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
I’=I-III	0	0	1/15	-4/15	1	0	-9/15
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
----------+----+----+-------+-------+----+---+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|-------------+----+----+--------+----+-------+---+--------|
I’=-15/4I	0	0	-1/4	1	-15/4	0	9/4
II’=II-1/4I	0	1	15/60	0	-1/4	0	7/4
III’=III+I	1	0	0	0	1	0	1
-------------+----+----+--------+----+-------+---+--------							
	0	0	-37/60	0	-9/4	1	-90/20

always a b term negative
after branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cjaij | : aij < 0}

12

Branch and Bound
Preprocessing

• Let’s consider first the left branch:
| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+-------+-------+----+----+-------|
	1	0	0	0	1	0	1
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
---+----+----+-------+-------+----+----+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
I’=I-III	0	0	1/15	-4/15	1	0	-9/15
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
----------+----+----+-------+-------+----+---+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|-------------+----+----+--------+----+-------+---+--------|
I’=-15/4I	0	0	-1/4	1	-15/4	0	9/4
II’=II-1/4I	0	1	15/60	0	-1/4	0	7/4
III’=III+I	1	0	0	0	1	0	1
-------------+----+----+--------+----+-------+---+--------							
	0	0	-37/60	0	-9/4	1	-90/20

always a b term negative
after branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cjaij | : aij < 0}

12

Branch and Bound
Preprocessing

• Let’s consider first the left branch:
| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+-------+-------+----+----+-------|
	1	0	0	0	1	0	1
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
---+----+----+-------+-------+----+----+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
I’=I-III	0	0	1/15	-4/15	1	0	-9/15
	0	1	4/15	-1/15	0	0	24/15
	1	0	-1/15	4/15	0	0	24/15
----------+----+----+-------+-------+----+---+-------							
	0	0	-7/15	-3/5	0	1	-24/5

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|-------------+----+----+--------+----+-------+---+--------|
I’=-15/4I	0	0	-1/4	1	-15/4	0	9/4
II’=II-1/4I	0	1	15/60	0	-1/4	0	7/4
III’=III+I	1	0	0	0	1	0	1
-------------+----+----+--------+----+-------+---+--------							
	0	0	-37/60	0	-9/4	1	-90/20

always a b term negative
after branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj{| cjaij | : aij < 0}

12

Branch and Bound
Preprocessing

• Let’s branch again

4.8

4.5
x2 ≤ 1 x2 ≥ 2

x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let’s take A.

13

Branch and Bound
Preprocessing

• Let’s branch again

4.8

4.5
x2 ≤ 1 x2 ≥ 2

x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let’s take A.

13

Branch and Bound
Preprocessing

• Let’s branch again

4.8

4.5

B

x2 ≤ 1

A

x2 ≥ 2

x1 ≤ 1

C

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let’s take A.

13

Branch and Bound
Preprocessing

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|---+----+----+--------+----+-------+----+---+------|
	0	-1	0	0	0	1	0	-2
	0	0	-1/4	1	-15/4		0	9/4
	0	1	15/60	0	-1/4		0	7/4
	1	0	0	0	1		0	1
---+----+----+--------+----+-------+----+---+------								
	0	0	-37/60	0	-9/4		1	-9/2

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|-------+----+----+--------+----+-------+----+---+------|
III+I	0	0	1/4	0	-1/4	1	0	-1/4
	0	0	-1/4	1	-15/4		0	9/4
	0	1	15/60	0	-1/4		0	7/4
	1	0	0	0	1		0	1
-------+----+----+--------+----+-------+----+---+------								
	0	0	-37/60	0	-9/4		1	-9/2

continuing we find:
x1 = 0
x2 = 2
OPT = 4

14

Branch and Bound
Preprocessing

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|---+----+----+--------+----+-------+----+---+------|
	0	-1	0	0	0	1	0	-2
	0	0	-1/4	1	-15/4		0	9/4
	0	1	15/60	0	-1/4		0	7/4
	1	0	0	0	1		0	1
---+----+----+--------+----+-------+----+---+------								
	0	0	-37/60	0	-9/4		1	-9/2

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|-------+----+----+--------+----+-------+----+---+------|
III+I	0	0	1/4	0	-1/4	1	0	-1/4
	0	0	-1/4	1	-15/4		0	9/4
	0	1	15/60	0	-1/4		0	7/4
	1	0	0	0	1		0	1
-------+----+----+--------+----+-------+----+---+------								
	0	0	-37/60	0	-9/4		1	-9/2

continuing we find:
x1 = 0
x2 = 2
OPT = 4

14

Branch and Bound
Preprocessing

The final tree:

4.8
−∞

4.5
−∞

3
3

x1=1
x2=1

x2 ≤ 1

4
4

x1=0
x2=2

x2 ≥ 2

x2 ≤ 1

2
2

x1=2
x2=0

x1 ≥ 2

The optimal solution is 4.

15

Branch and Bound
PreprocessingPruning

Pruning:

1. by optimality: zk = max{cT x : x ∈ Sk}

2. by bound zk ≤ z
Example:

5.8
−∞

4.5
−∞

4
4

2.3
−∞

3. by infeasibility Sk = ∅

16

Branch and Bound
PreprocessingB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.
Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}
Choosing Node for Examination from the list of active (or open):

• Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)

• Best Bound First: (eg. largest upper: z s = maxk zk

or largest lower - to die fast)
• Mixed strategies

17

Branch and Bound
PreprocessingB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.

Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}
Choosing Node for Examination from the list of active (or open):

• Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)

• Best Bound First: (eg. largest upper: z s = maxk zk

or largest lower - to die fast)
• Mixed strategies

17

Branch and Bound
PreprocessingB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.
Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}

Choosing Node for Examination from the list of active (or open):
• Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)

• Best Bound First: (eg. largest upper: z s = maxk zk

or largest lower - to die fast)
• Mixed strategies

17

Branch and Bound
PreprocessingB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.
Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}
Choosing Node for Examination from the list of active (or open):

• Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just
adding a new constraint)

• Best Bound First: (eg. largest upper: z s = maxk zk

or largest lower - to die fast)
• Mixed strategies 17

Branch and Bound
Preprocessing

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

z = max{z , 4}

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

18

Branch and Bound
PreprocessingEnhancements

• Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{cTx : Ax ≤ b, l ≤ x ≤ u}

fix xj = lj if cj < 0 and aij > 0 for all i
fix xj = uj if cj > 0 and aij < 0 for all i

• Priorities: establish the next variable to branch

• Special ordered sets SOS (or generalized upper bound GUB)
k∑

j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and S2 = S ∩ {x : xji = 0, i = r + 1, .., k},
r = min{t :

∑t
i=1 x

∗
ji
≥ 1

2}

19

Branch and Bound
PreprocessingEnhancements

• Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{cTx : Ax ≤ b, l ≤ x ≤ u}

fix xj = lj if cj < 0 and aij > 0 for all i
fix xj = uj if cj > 0 and aij < 0 for all i

• Priorities: establish the next variable to branch

• Special ordered sets SOS (or generalized upper bound GUB)
k∑

j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and S2 = S ∩ {x : xji = 0, i = r + 1, .., k},
r = min{t :

∑t
i=1 x

∗
ji
≥ 1

2}

19

Branch and Bound
PreprocessingEnhancements

• Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{cTx : Ax ≤ b, l ≤ x ≤ u}

fix xj = lj if cj < 0 and aij > 0 for all i
fix xj = uj if cj > 0 and aij < 0 for all i

• Priorities: establish the next variable to branch

• Special ordered sets SOS (or generalized upper bound GUB)
k∑

j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and S2 = S ∩ {x : xji = 0, i = r + 1, .., k},
r = min{t :

∑t
i=1 x

∗
ji
≥ 1

2} 19

Branch and Bound
Preprocessing

• Cutoff value: a user-defined primal bound to pass to the system.

• Simplex strategies: simplex is good for reoptimizing but for large models interior points
methods may work best.

• Strong branching: extra work to decide more accurately on which variable to branch:
1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)
3. z↓j , z

↑
j (dual bound of down and up branch)

j∗ = argmin
j∈C

max{z↓j , z
↑
j }

ie, choose variable with largest decrease of dual bound, eg UB for max

20

Branch and Bound
Preprocessing

• Cutoff value: a user-defined primal bound to pass to the system.

• Simplex strategies: simplex is good for reoptimizing but for large models interior points
methods may work best.

• Strong branching: extra work to decide more accurately on which variable to branch:
1. choose a set C of fractional variables
2. reoptimize for each of them (in case for limited iterations)
3. z↓j , z

↑
j (dual bound of down and up branch)

j∗ = argmin
j∈C

max{z↓j , z
↑
j }

ie, choose variable with largest decrease of dual bound, eg UB for max

20

Branch and Bound
Preprocessing

There are four common reasons because integer programs can require a significant amount of
solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.

2. There is lack of progress in the best integer solution, i.e., the upper bound.

3. There is lack of progress in the best lower bound.

4. There is insufficient node throughput due to numerical instability in the problem data or
excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

gap =
|Primal bound− Dual bound|

Primal bound + ε
· 100

21

Branch and Bound
Preprocessing

There are four common reasons because integer programs can require a significant amount of
solution time:

1. There is lack of node throughput due to troublesome linear programming node solves.

2. There is lack of progress in the best integer solution, i.e., the upper bound.

3. There is lack of progress in the best lower bound.

4. There is insufficient node throughput due to numerical instability in the problem data or
excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

gap =
|Primal bound− Dual bound|

Primal bound + ε
· 100

21

Branch and Bound
Preprocessing

• heuristics for finding feasible solutions (generally NP-complete problem)

• find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and
cut

• Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of
reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the
node

22

Branch and Bound
PreprocessingRelative Optimality Gap

In CPLEX:

gap =
|best dual bound− best integer|

|best integer + 10−11|

In SCIP and MIPLIB standard:

gap =
pb − db

inf{|z |, z ∈ [db, pb]}
· 100 for a minimization problem

(if pb ≥ 0 and db ≥ 0 then pb−db
db)

if db = pb = 0 then gap = 0
if no feasible sol found or db ≤ 0 ≤ pb then the gap is not computed.

23

Branch and Bound
Preprocessing

Last standard avoids problem of non decreasing gap if we go through zero

3186 2520 -666.6217 4096 956.6330 -667.2010 1313338 169.74%
3226 2560 -666.6205 4097 956.6330 -667.2010 1323797 169.74%
3266 2600 -666.6201 4095 956.6330 -667.2010 1335602 169.74%

Elapsed real time = 2801.61 sec. (tree size = 77.54 MB, solutions = 2)
* 3324+ 2656 -125.5775 -667.2010 1363079 431.31%

3334 2668 -666.5811 4052 -125.5775 -667.2010 1370748 431.31%
3380 2714 -666.5799 4017 -125.5775 -667.2010 1388391 431.31%
3422 2756 -666.5791 4011 -125.5775 -667.2010 1403440 431.31%

24

Branch and Bound
PreprocessingAdvanced Techniques

We did not treat:

• LP: Dantzig Wolfe decomposition

• LP: Column generation

• LP: Delayed column generation

• IP: Branch and Price

• LP: Benders decompositions

• LP: Lagrangian relaxation

25

Branch and Bound
PreprocessingOutline

1. Branch and Bound

2. Preprocessing

27

Branch and Bound
PreprocessingPreprocessing rules

Consider S = {x : a0x0 +
∑n

j=1 ajxj ≤ b, lj ≤ xj ≤ uj , j = 0..n}

• Bounds on variables.
If a0 > 0 then:

x0 ≤

b −
∑
j :aj>0

aj lj −
∑
j :aj<0

ajuj

 /a0

and if a0 < 0 then

x0 ≥

b −
∑
j :aj>0

aj lj −
∑
j :aj<0

ajuj

 /a0

• Redundancy. The constraint
∑n

j=0 ajxj ≤ b is redundant if∑
j :aj>0

ajuj +
∑
j :aj<0

aj lj ≤ b

28

Branch and Bound
PreprocessingPreprocessing rules

Consider S = {x : a0x0 +
∑n

j=1 ajxj ≤ b, lj ≤ xj ≤ uj , j = 0..n}

• Bounds on variables.
If a0 > 0 then:

x0 ≤

b −
∑
j :aj>0

aj lj −
∑
j :aj<0

ajuj

 /a0

and if a0 < 0 then

x0 ≥

b −
∑
j :aj>0

aj lj −
∑
j :aj<0

ajuj

 /a0

• Redundancy. The constraint
∑n

j=0 ajxj ≤ b is redundant if∑
j :aj>0

ajuj +
∑
j :aj<0

aj lj ≤ b

28

Branch and Bound
Preprocessing

• Infeasibility: S = ∅ if (swapping lower and upper bounds from previous case)∑
j :aj>0

aj lj +
∑
j :aj<0

ajuj > b

• Variable fixing. For a max problem in the form

max{cTx : Ax ≤ b, l ≤ x ≤ u}

if ∀i = 1..m : aij ≥ 0, cj < 0 then fix xj = lj
if ∀i = 1..m : aij < 0, cj > 0 then fix xj = uj

• Integer variables:

dlje ≤ xj ≤ bujc

• Binary variables. Probing: add a constraint, eg, x2 = 0 and check what happens

29

Branch and Bound
Preprocessing

• Infeasibility: S = ∅ if (swapping lower and upper bounds from previous case)∑
j :aj>0

aj lj +
∑
j :aj<0

ajuj > b

• Variable fixing. For a max problem in the form

max{cTx : Ax ≤ b, l ≤ x ≤ u}

if ∀i = 1..m : aij ≥ 0, cj < 0 then fix xj = lj
if ∀i = 1..m : aij < 0, cj > 0 then fix xj = uj

• Integer variables:

dlje ≤ xj ≤ bujc

• Binary variables. Probing: add a constraint, eg, x2 = 0 and check what happens

29

Branch and Bound
Preprocessing

• Infeasibility: S = ∅ if (swapping lower and upper bounds from previous case)∑
j :aj>0

aj lj +
∑
j :aj<0

ajuj > b

• Variable fixing. For a max problem in the form

max{cTx : Ax ≤ b, l ≤ x ≤ u}

if ∀i = 1..m : aij ≥ 0, cj < 0 then fix xj = lj
if ∀i = 1..m : aij < 0, cj > 0 then fix xj = uj

• Integer variables:

dlje ≤ xj ≤ bujc

• Binary variables. Probing: add a constraint, eg, x2 = 0 and check what happens

29

Branch and Bound
Preprocessing

• Infeasibility: S = ∅ if (swapping lower and upper bounds from previous case)∑
j :aj>0

aj lj +
∑
j :aj<0

ajuj > b

• Variable fixing. For a max problem in the form

max{cTx : Ax ≤ b, l ≤ x ≤ u}

if ∀i = 1..m : aij ≥ 0, cj < 0 then fix xj = lj
if ∀i = 1..m : aij < 0, cj > 0 then fix xj = uj

• Integer variables:

dlje ≤ xj ≤ bujc

• Binary variables. Probing: add a constraint, eg, x2 = 0 and check what happens
29

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9
R3 : x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1
x3 ≥ 1

R1 :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9 x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17 x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7 x2 ≥ −7/2, x2 ≥ 0

R2 :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3 + 1 = 7 x1 ≥ 7/8

R1 :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8 x3 ≤ 101/64

R3 : x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence R3 is redundant

30

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9
R3 : x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1
x3 ≥ 1

R1 :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9 x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17 x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7 x2 ≥ −7/2, x2 ≥ 0

R2 :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3 + 1 = 7 x1 ≥ 7/8

R1 :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8 x3 ≤ 101/64

R3 : x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence R3 is redundant

30

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9
R3 : x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1
x3 ≥ 1

R1 :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9 x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17 x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7 x2 ≥ −7/2, x2 ≥ 0

R2 :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3 + 1 = 7 x1 ≥ 7/8

R1 :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8 x3 ≤ 101/64

R3 : x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence R3 is redundant

30

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9
R3 : x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1
x3 ≥ 1

R1 :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9 x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17 x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7 x2 ≥ −7/2, x2 ≥ 0

R2 :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3 + 1 = 7 x1 ≥ 7/8

R1 :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8 x3 ≤ 101/64

R3 : x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence R3 is redundant

30

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9
R3 : x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3
0 ≤ x2 ≤ 1
x3 ≥ 1

R1 :5x1 ≤ 15 + 2x2 − 8x3 ≤ 15 + 2 ·
u2︷︸︸︷
1 −8 ·

l3︷︸︸︷
1 = 9 x1 ≤ 9/5

8x3 ≤ 15 + 2x2 − 5x1 ≤ 15 + 2 · 1 − 5 · 0 = 17 x3 ≤ 17/8

2x2 ≥ 5x1 + 8x3 − 15 ≥ 5 · 0 + 8 · 1 = −7 x2 ≥ −7/2, x2 ≥ 0

R2 :8x1 ≥ 9 − 3x2 + x3 ≥ 9 − 3 + 1 = 7 x1 ≥ 7/8

R1 :8x3 ≥ 15 + 2x2 − 5x1 ≤ 15 + 2 − 5 · 7/8 = 101/8 x3 ≤ 101/64

R3 : x1 + x2 + x3 ≤ 9/5 + 1 + 101/64 < 6 Hence R3 is redundant
30

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9

7/8 ≤ x1 ≤ 9/5
0 ≤ x2 ≤ 1
1 ≤ x3 ≤ 101/64

Increasing x2 makes constraints satisfied x2 = 1
Decreasing x3 makes constraints satisfied x3 = 1

We are left with:

max{2x1 : 7/8 ≤ x1 ≤ 9/5}

31

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9

7/8 ≤ x1 ≤ 9/5
0 ≤ x2 ≤ 1
1 ≤ x3 ≤ 101/64

Increasing x2 makes constraints satisfied x2 = 1
Decreasing x3 makes constraints satisfied x3 = 1

We are left with:

max{2x1 : 7/8 ≤ x1 ≤ 9/5}

31

Branch and Bound
PreprocessingExample

max 2x1 + x2 − x3
R1 : 5x1 − 2x2 + 8x3 ≤ 15
R2 : 8x1 + 3x2 − x3 ≥ 9

7/8 ≤ x1 ≤ 9/5
0 ≤ x2 ≤ 1
1 ≤ x3 ≤ 101/64

Increasing x2 makes constraints satisfied x2 = 1
Decreasing x3 makes constraints satisfied x3 = 1

We are left with:

max{2x1 : 7/8 ≤ x1 ≤ 9/5}

31

Branch and Bound
PreprocessingPreprocessing for Set Covering/Partitioning

1. if eTi A = 0 then the ith row can never be satisfied

[
0 0 . . . 1 . . . 0

]
0 . . . 0 . . . 0

 =

0
0
0
...
0
0

2. if eTi A = ek then xk = 1 in every feasible solution

[
0 0 . . . 1 . . . 0

]
 0 . . . 1 . . . 0

 =

0
...
1
...
0
0

In SPP can remove all rows
t with atk = 1 and set
xj = 0 (ie, remove cols) for
all cols that cover t

32

Branch and Bound
PreprocessingPreprocessing for Set Covering/Partitioning

1. if eTi A = 0 then the ith row can never be satisfied

[
0 0 . . . 1 . . . 0

]
0 . . . 0 . . . 0

 =

0
0
0
...
0
0

2. if eTi A = ek then xk = 1 in every feasible solution

[
0 0 . . . 1 . . . 0

]
 0 . . . 1 . . . 0

 =

0
...
1
...
0
0

In SPP can remove all rows
t with atk = 1 and set
xj = 0 (ie, remove cols) for
all cols that cover t

32

Branch and Bound
PreprocessingPreprocessing for Set Covering/Partitioning

1. if eTi A = 0 then the ith row can never be satisfied

[
0 0 . . . 1 . . . 0

]
0 . . . 0 . . . 0

 =

0
0
0
...
0
0

2. if eTi A = ek then xk = 1 in every feasible solution

[
0 0 . . . 1 . . . 0

]
 0 . . . 1 . . . 0

 =

0
...
1
...
0
0

In SPP can remove all rows
t with atk = 1 and set
xj = 0 (ie, remove cols) for
all cols that cover t

32

3. if eTt A ≥ eTp A then we can remove row t, row p dominates row t (by covering p we cover t)

t 1 1 1

p 1 1

In SPP we can remove all
cols j : atj = 1, apj = 0

4. if
∑

j∈S Aej = Aek and
∑

j∈S cj ≤ ck then we can cover the rows by Aek more cheaply with S
and set xk = 0
(Note, we cannot remove S if

∑
j∈S cj ≥ ck)

1 1
1 1

1 1
0 0 0 0
1 1
0 0 0 0

3. if eTt A ≥ eTp A then we can remove row t, row p dominates row t (by covering p we cover t)

t 1 1 1

p 1 1

In SPP we can remove all
cols j : atj = 1, apj = 0

4. if
∑

j∈S Aej = Aek and
∑

j∈S cj ≤ ck then we can cover the rows by Aek more cheaply with S
and set xk = 0
(Note, we cannot remove S if

∑
j∈S cj ≥ ck)

1 1
1 1

1 1
0 0 0 0
1 1
0 0 0 0

Branch and Bound
PreprocessingSummary

1. Branch and Bound

2. Preprocessing

34

	Branch and Bound
	Preprocessing

