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Derivation
Sensitivity AnalysisDual Problem

Dual variables y in one-to-one correspondence with the constraints:
Primal problem:

max z = cTx
Ax = b
x ≥ 0

Dual Problem:

min w = bTy
ATy ≥ c

y ∈ Rm

• Basic feasible solutions of (P) give immediate lower bounds on the optimal value z∗. Is there a
simple way to get upper bounds?

• The optimal solution must satisfy any linear combination y ∈ Rm of the equality constraints.

• If we can construct a linear combination of the equality constraints yT (Ax) = yTb, for
y ∈ Rm, such that cTx ≤ yT (Ax), then yT (Ax) = yTb is an upper bound on z∗.
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Derivation
Sensitivity AnalysisGeometric Interpretation

max x1 + x2 = z
2x1 + x2 ≤ 14
−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1, x2 ≥ 0

x1 + x2 2x1 + x2 ≤ 14

−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1

x2

Feasible sol x∗ = (4, 6) yields z∗ = 10. To prove that it is optimal we need to verify that
y∗ = (3/5, 1/5, 0) is a feasible solution of D:

min 14y1 + 8y2 + 10y3 = w
2y1 − y2 + 2y3 ≥ 1
y1 + 2y2 − y3 ≥ 1

y1, y2, y3 ≥ 0

and that w∗ = 10
3
5 · ( 2x1 + x2 ≤ 14)
1
5 · ( −x1 + 2x2 ≤ 8)

x1 + x2 ≤ 10 x1 + x2 ≤ 10x1

x2
the feasibility region

of P is a subset of the
half plane x1 + x2 ≤ 10
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(2v − w)x1 + (v + 2w)x2 ≤ 14v + 8w

set of halfplanes that contain the feasibility region of P and pass through [4, 6]

2v − w ≥ 1
v + 2w ≥ 1

Example of boundary lines among those allowed:

v = 1,w = 0 =⇒ 2x1 + x2 = 14

v = 1,w = 1 =⇒ x1 + 3x2 = 22

v = 2,w = 1 =⇒ 3x1 + 4x2 = 36 x1 + x2 ≤ 10

x1 + 3x2 = 22

2x1 + x2 = 14

3x1 + 4x2 = 36 x1

x2
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Derivation
Sensitivity AnalysisLagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one
that provides information in terms of bounds. Then, search for the strongest bounds.

min 13x1 + 6x2 + 4x3 +12x4
2x1 + 3x2 + 4x3 + 5x4 = 7
3x1 + + 2x3 + 4x4 = 2

x1, x2, x3, x4 ≥ 0

We wish to reduce to a problem easier to solve, ie:

min c1x1 + c2x2 + . . . +cnxn
x1, x2, . . . , xn ≥ 0

solvable by inspection: if c < 0 then x = +∞, if c ≥ 0 then x = 0.
measure of violation of the constraints:

7 − (2x1 + 3x2 + 4x3 + 5x4)
2 − (3x1 + + 2x3 + 4x4)
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We relax these measures in obj. function with Lagrangian multipliers y1, y2.
We obtain a family of problems:

PR(y1, y2) = min
x1,x2,x3,x4≥0

 13x1 + 6x2 + 4x3 + 12x4
+y1(7− 2x1 − 3x2 − 4x3 − 5x4)
+y2(2− 3x1 − 2x3 − 4x4)


1. for all y1, y2 ∈ R : opt(PR(y1, y2)) ≤ opt(P)

2. maxy1,y2∈R{opt(PR(y1, y2))} ≤ opt(P)

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)

12



Derivation
Sensitivity Analysis

PR(y1, y2) = min
x1,x2,x3,x4≥0


(13 − 2y2 − 3y2) x1

+ (6 − 3y1 ) x2
+ (4 − 2y2) x3
+ (12 − 5y1 − 4y2) x4
+ 7y1 + 2y2


if coeff. of x is < 0 then bound is −∞ then LB is useless

(13 − 2y2 − 3y2) ≥ 0
(6 − 3y1 ) ≥ 0
(4 − 2y2) ≥ 0

(12 − 5y1 − 4y2) ≥ 0

If they all hold then we are left with 7y1 + 2y2 because all go to 0.

max 7y1 + 2y2
2y2 + 3y2 ≤ 13
3y1 ≤ 6

+ 2y2 ≤ 4
5y1 + 4y2 ≤ 12
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Sensitivity AnalysisGeneral Formulation

min z = cTx c ∈ Rn

Ax = b A ∈ Rm×n,b ∈ Rm

x ≥ 0 x ∈ Rn

max
y∈Rm
{min
x∈Rn

+

{cTx + yT (b− Ax)}}

max
y∈Rm
{min
x∈Rn

+

{(cT − yTA)x + yTb}}

max bTy
ATy ≤ c

y ∈ Rm
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• Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what
happens in the primal tableau:

max{cT x | Ax ≤ b, x ≥ 0} = min{bT y | AT y ≥ cT , y ≥ 0}
= −max{−bT y | −AT x ≤ −cT , y ≥ 0}

• We obtain a new algorithm for the primal problem: the dual simplex
It corresponds to the primal simplex applied to the dual

Primal simplex on primal problem:

1. pivot > 0

2. col cj with wrong sign

3. row: min
{

bi
aij

: aij > 0, i = 1, ..,m
}

Dual simplex on primal problem:
1. pivot < 0

2. row bi < 0
(condition of feasibility)

3. col: min
{∣∣∣ cjaij ∣∣∣ : aij < 0, j = 1, 2, .., n + m

}
(least worsening solution)
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0. (primal) simplex on primal problem (the one studied so far)

1. Now: dual simplex on primal problem ≡ primal simplex on dual problem
(implemented as dual simplex, understood as primal simplex on dual problem)

Uses of 1.:

• The dual simplex can work better than the primal in some cases.
Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better
the dual

• Infeasible start
Dual based Phase I algorithm (Dual-primal algorithm)
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Sensitivity AnalysisDual Simplex for Phase I

Example

Primal:
max −x1 − x2

−2x1 − x2 ≤ 4
−2x1 + 4x2 ≤ −8
−x1 + 3x2 ≤ −7

x1, x2 ≥ 0

Dual:
min 4y1 − 8y2 − 7y3

−2y1 − 2y2 − y3 ≥ −1
−y1 + 4y2 + 3y3 ≥ −1

y1, y2, y3 ≥ 0

• Initial tableau

| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+----+----+----+----|
| | -2 | -1 | 1 | 0 | 0 | 0 | 4 |
| | -2 | 4 | 0 | 1 | 0 | 0 | -8 |
| | -1 | 3 | 0 | 0 | 1 | 0 | -7 |
|---+----+----+----+----+----+----+----|
| | -1 | -1 | 0 | 0 | 0 | 1 | 0 |

infeasible start

• x1 enters, w2 leaves

• Initial tableau (min by ≡ −max−by)

| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+----+----+----+----+----+----+---|
| | 2 | 2 | 1 | 1 | 0 | 0 | 1 |
| | 1 | -4 | -3 | 0 | 1 | 0 | 1 |
|---+----+----+----+----+----+----+---|
| | -4 | 8 | 7 | 0 | 0 | 1 | 0 |

feasible start (thanks to −x1 − x2)

• y2 enters, z1 leaves
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• x1 enters, w2 leaves
| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+------+----+----+----|
| | 0 | -5 | 1 | -1 | 0 | 0 | 12 |
| | 1 | -2 | 0 | -0.5 | 0 | 0 | 4 |
| | 0 | 1 | 0 | -0.5 | 1 | 0 | -3 |
|---+----+----+----+------+----+----+----|
| | 0 | -3 | 0 | -0.5 | 0 | 1 | 4 |

• w2 enters, w3 leaves (note that we kept cj < 0,
ie, optimality)
| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+----+----+----+----|
| | 0 | -7 | 1 | 0 | -2 | 0 | 18 |
| | 1 | -3 | 0 | 0 | -1 | 0 | 7 |
| | 0 | -2 | 0 | 1 | -2 | 0 | 6 |
|---+----+----+----+----+----+----+----|
| | 0 | -4 | 0 | 0 | -1 | 1 | 7 |

• y2 enters, z1 leaves
| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+----+----+-----+-----+----+----+-----|
| | 1 | 1 | 0.5 | 0.5 | 0 | 0 | 0.5 |
| | 5 | 0 | -1 | 2 | 1 | 0 | 3 |
|---+----+----+-----+-----+----+----+-----|
| | -4 | 0 | 3 | -12 | 0 | 1 | -4 |

• y3 enters, y2 leaves
| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+-----+----+----+----+----+----+----|
| | 2 | 2 | 1 | 1 | 0 | 0 | 1 |
| | 7 | 2 | 0 | 3 | 1 | 0 | 3 |
|---+-----+----+----+----+----+----+----|
| | -18 | -6 | 0 | -7 | 0 | 1 | -7 |

20



Derivation
Sensitivity AnalysisSummary

• Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian

• Theory:
• Symmetry
• Weak duality theorem
• Strong duality theorem
• Complementary slackness theorem

• Dual Simplex

• Sensitivity Analysis, Economic interpretation

21



Derivation
Sensitivity AnalysisOutline

1. Derivation
Geometric Interpretation
Lagrangian Duality
Dual Simplex

2. Sensitivity Analysis

22



Derivation
Sensitivity AnalysisEconomic Interpretation

max 5x0 + 6x1 + 8x2

6x0 + 5x1 + 10x2 ≤ 60
8x0 + 4x1 + 4x2 ≤ 40
4x0 + 5x1 + 6x2 ≤ 50

x0, x1, x2 ≥ 0
final tableau:

x0 x1 x2 s1 s2 s3 −z b

0 1 0 5/2
1 0 0 7
0 0 1 2

−1/5 0 0 −1/5 0 −1 −62

• Which are the values of variables, the reduced costs, the shadow prices (or marginal prices),
the values of dual variables?

• If one slack variable > 0 then overcapacity: s2 = 2 then the second constraint is not tight
• How many products can be produced at most? at most m
• How much more expensive a product not selected should be?
look at reduced costs: cj + πaj > 0

• What is the value of extra capacity of manpower? In +1 out +1/5 23
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Game: Suppose two economic operators:
• P owns the factory and produces goods
• D is in the market buying and selling raw material and resources
• D asks P to close and sell him all resources
• P considers if the offer is convenient
• D wants to spend least possible
• y are prices that D offers for the resources
•
∑

yibi is the amount D has to pay to have all resources of P
•
∑

yiaij ≥ cj total value to make j > price per unit of product
• P either sells all resources

∑
yiaij or produces product j (cj)

• without ≥ there would not be negotiation because P would be better off producing and selling
I at optimality the situation is indifferent (strong th.)
I resource 2 that was not totally utilized in the primal has been given value 0 in the dual.

(complementary slackness th.) Plausible, since we do not use all the resource, likely to place
not so much value on it.

I for product 0
∑

yiaij > cj hence not profitable producing it. (complementary slackness th.)
24
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aka Postoptimality Analysis

Instead of solving each modified problem from scratch, exploit results obtained from solving the
original problem.

max{cTx | Ax = b, l ≤ x ≤ u} (*)

(I) changes to coefficients of objective function: max{c̃Tx | Ax = b, l ≤ x ≤ u} (primal)
x∗ of (*) remains feasible hence we can restart the simplex from x∗

(II) changes to RHS terms: max{cTx | Ax = b̃, l ≤ x ≤ u} (dual)
x∗ optimal feasible solution of (*)
basic sol x̄ of (II): x̄N = x∗N , AB x̄B = b̃− AN x̄N
x̄ is dual feasible and we can start the dual simplex from there. If b̃ differs from b only slightly
it may be we are already optimal.
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(III) introduce a new variable: (primal)

max
6∑

j=1

cjxj

6∑
j=1

aijxj = bi , i = 1, . . . , 3

lj ≤ xj ≤ uj , j = 1, . . . , 6

[x∗
1 , . . . , x

∗
6 ] feasible

max
7∑

j=1

cjxj

7∑
j=1

aijxj = bi , i = 1, . . . , 3

lj ≤ xj ≤ uj , j = 1, . . . , 7

[x∗
1 , . . . , x

∗
6 , 0] feasible

(IV) introduce a new constraint: (dual)
6∑

j=1

a4jxj = b4

6∑
j=1

a5jxj = b5

lj ≤ xj ≤ uj j = 7, 8

[x∗
1 , . . . , x

∗
6 ] optimal

[x∗
1 , . . . , x

∗
6 , x

∗
7 , x

∗
8 ] feasible

x∗
7 = b4 −

6∑
j=1

a4jx
∗
j

x∗
8 = b5 −

6∑
j=1

a5jx
∗
j 26
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(I) Variation of reduced costs:

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

The last tableau gives the possibility to
estimate the effect of variations

x1 x2 x3 x4 −z b

x3 5 10 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

x1 x2 x3 x4 −z b

x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 −2/5 −1 1 −64

For a variable in basis the perturbation goes unchanged in the red. costs. Eg:

max (6 + δ)x1 + 8x2 =⇒ c̄1 = 1(6 + δ)− 2
5
· 5− 1 · 4 = δ

then need to bring in canonical form and hence δ changes the obj value.
For a variable not in basis, if it changes the sign of the reduced cost =⇒ worth bringing in basis
=⇒the δ term propagates to other columns
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(II) Changes in RHS terms

x1 x2 x3 x4 −z b

x3 5 10 1 0 0 60+ δ
x4 4 4 0 1 0 40+ ε

6 8 0 0 1 0

x1 x2 x3 x4 −z b

x2 0 1 1/5 − 1/4 0 2+ 1/5δ − 1/4ε
x1 1 0 −1/5 1/2 0 8− 1/5δ + 1/2ε

0 0 −2/5 −1 1 −64− 2/5δ − ε

(It would be more convenient to augment the second. But let’s take ε = 0.)
If 60 + δ =⇒all RHS terms change and we must check feasibility
Which are the multipliers for the first row?k1 = 1

5 , k2 = − 1
4 , k3 = 0

I: 1/5(60 + δ)− 1/4 · 40 + 0 · 0 = 12 + δ/5− 10 = 2 + δ/5
II: −1/5(60 + δ) + 1/2 · 40 + 0 · 0 = −60/5 + 20− δ/5 = 8− 1/5δ
Risk that RHS becomes negative
Eg: if δ = −10 =⇒tableau stays optimal but not feasible =⇒apply dual simplex

28
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64 + 2/5δ

40-10
δ

f .o.
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(III) Add a variable

max 5x0 + 6x1 + 8x2
6x0 + 5x1 + 10x2 ≤ 60
8x0 + 4x1 + 4x2 ≤ 40

x0, x1, x2 ≥ 0

Reduced cost of x0? cj +
∑
πiaij = +1 · 5− 2

5 · 6 + (−1)8 = − 27
5

To make worth entering in basis:
• increase its cost
• decrease the technological coefficient in constraint II: 5− 2/5 · 6− a20 > 0
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(IV) Add a constraint

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40
5x1 + 6x2 ≤ 50

x1, x2 ≥ 0

Final tableau not in canonical form, need to iterate with dual simplex

x1 x2 x3 x4 x5 −z b
x2 0 1 1/5 −1/4 0 2
x1 1 0 −1/5 1/2 0 8

0 0 5/5 6/4 1 0 −2
0 0 −2/5 −1 0 1 −64
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(V) change in a technological coefficient:

x1 x2 x3 x4 −z b

x3 5 10+ δ 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

• first effect on its column
• then look at c
• finally look at b

x1 x2 x3 x4 −z b

x2 0 (10+ δ)1/5+ 4(−1/4) 1/5 −1/4 0 2
x1 1 (10+ δ)(−1/5) + 4(1/2) −1/5 1/2 0 8

0 −2/5δ −2/5 −1 1 −64
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• The dominant application of LP is mixed integer linear programming.

• In this context it is extremely important being able to begin with a model instantiated in one
form followed by a sequence of problem modifications

• row and column additions and deletions,
• variable fixings

interspersed with resolves
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