DM554/DM545 Linear and Integer Programming

Lecture 9 Integer Linear Programming Modeling

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling

Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Discrete Optimization

- Often we need to deal with integral inseparable quantities
- Sometimes rounding can go
- Other times rounding not feasible: eg, presence of a bus on a line is 0.3...

Integer Linear Programming

Linear Objective Linear Constraints but! integer variables The world is not linear: "OR is the art and science of obtaining bad answers to questions to which otherwise worse answers would be given"

 $\max \mathbf{c}^T \mathbf{x} + \mathbf{h}^T \mathbf{v}$ $A\mathbf{x} + G\mathbf{y} < \mathbf{b}$ $\max \mathbf{c}^T \mathbf{x}$ $\max \mathbf{c}^T \mathbf{x}$ $\max \mathbf{c}^T \mathbf{x}$ x > 0 Ax < bAx < bA x < by > 0 x > 0 $x \in \{0, 1\}^n$ x > 0**v** integer **x** integer Linear Programming Integer (Linear) Programming Binary Integer Program Mixed Integer (Linear) (LP)(ILP) (BIP) Programming (MILP) 0/1 Integer Programming $\max f(\mathbf{x})$ $g(\mathbf{x}) \leq \mathbf{b}$ Non-linear Programming (NLP) x > 0

Recall:

- \mathbb{Z} set of integers
- \mathbb{Z}^+ set of positive integer
- \mathbb{Z}_0^+ set of nonnegative integers ({0} $\cup \mathbb{Z}^+$)
- \mathbb{N}_0 set of natural numbers, ie, nonnegative integers $\{0,1,2,3,4,...\}$

Combinatorial Optimization Problems

Definition (Combinatorial Optimization Problem (COP))

Input: Given a finite set $N = \{1, ..., n\}$ of objects, weights c_j for all $j \in N$, a collection of feasible subsets of N, \mathcal{F} **Task:** Find a minimum weight feasible subset, ie,

$$\min_{S\subseteq N} \left\{ \sum_{j\in S} c_j \mid S \in \mathcal{F} \right\}$$

Many COP can be modelled as IP or BIP.

Typically: incidence vector of S,
$$\mathbf{x}^{S} \in \mathbb{B}^{n}$$
: $x_{j}^{S} = \begin{cases} 1 & \text{if } j \in S \\ 0 & \text{otherwise} \end{cases}$

Rounding

 $\begin{array}{l} \max \ 100x_1 \ + \ 64x_2 \\ 50x_1 \ + \ 31x_2 \ \leq \ 250 \\ 3x_1 \ - \ 2x_2 \ \geq \ -4 \\ x_1, x_2 \ \in \ \mathbb{Z}^+ \end{array}$

LP optimum (376/193,950/193) IP optimum (5,0)

Note: rounding does not help in the example above!

 \rightsquigarrow feasible region convex but not continuous: Now the optimum can be on the border (vertices) but also internal.

Possible way: solve the relaxed problem.

- If solution is integer, done.
- If solution is rational (never irrational) try rounding to the nearest integers (but may exit feasibility region) if in R² then 2² possible roundings (up or down)

if in \mathbb{R}^n then 2^n possible roundings (up or down)

Cutting Planes

Branch and Bound

 $\begin{array}{rl} \max \ x_1 \ + 2x_2 \\ x_1 \ + 4x_2 \leq 8 \\ 4x_1 \ + \ x_2 \ \leq 8 \\ x_1, x_2 \geq 0, \mbox{integer} \end{array}$

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Mathematical Programming: Modeling

- Find out exactly what the decision maker needs to know:
 - which investment?
 - which product mix?
 - which job *j* should a person *i* do?
- Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding to the needs and Known Parameters corresponding to given data.
- Formulate Objective Function computing the benefit/cost
- Formulate mathematical Constraints indicating the interplay between the different variables.

How to "build" a constraint

- Formulate relationship between the variables in plain words
- Then formulate your sentences using logical connectives and, or, not, implies
- Finally convert the logical statement to a mathematical constraint.

Example

- "The power plant must not work in both of two neighbouring time periods"
- on/off is modelled using **binary** integer variables
- $x_i = 1$ or $x_i = 0$
- $x_i = 1$ implies $\Rightarrow x_{i+1} = 0$
- $x_i + x_{i+1} \leq 1$

1. Integer Programming

2. Modeling Assignment Problem Knapsack Problem

Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

The Assignment Problem

Problem

Common application: Assignees are being assigned to perform tasks.

Suppose we have n persons and n jobs Each person has a certain proficiency at each job.

Formulate a mathematical model that can be used to find an assignment that maximizes the total proficiency.

The Assignment Problem

Decision Variables:

$$x_{ij} = \begin{cases} 1 \text{ if person } i \text{ is assigned job } j \\ 0 \text{ otherwise,} \end{cases} \text{ for } i, j = 1, 2, \dots, n$$

Objective Function:

where ρ_{ij} is person *i*'s proficiency at job *j*

The Assignment Problem

Constraints:

Each person is assigned one job:

 $\sum_{j=1}^n x_{ij} = 1 \text{ for all } i$

e.g. for person 1 we get $x_{11} + x_{12} + x_{13} + \dots + x_{1n} = 1$

Each job is assigned to one person:

 $\sum_{i=1}^n x_{ij} = 1 \text{ for all } j$

e.g. for job 1 we get $x_{11} + x_{21} + x_{31} + \cdots + x_{n1} = 1$

1. Integer Programming

2. Modeling Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

The Knapsack Problem

Problem ..

Input: Given a set of *n* items, each with a value v_i and weight w_i (i = 1, ..., n)

Task: determine the number of each items to include in a collection so that the total weight is less than a given limit, W, and the total value is as large as possible.

The "knapsack" name derives from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at most one of any item and that $\sum_i w_i > W$, formulate a mathematical model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.

The Knapsack Problem

Decision Variables:

$$x_i = \begin{cases} 1 \text{ if item } i \text{ is taken} \\ 0 \text{ otherwise,} \end{cases} \text{ for } i = 1, 2 \dots, n$$

Objective Function:

Constraints:

Knapsack capacity restriction:

 $\sum_{i=1}^n w_i x_i \leq W$

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Set Covering

Problem

Given: a set of regions, a set of possible construction locations for emergency centers, regions that can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and all regions are safely served

As a COP: $M = \{1, ..., m\}$ regions, $N = \{1, ..., n\}$ centers, $S_j \subseteq M$ regions serviced by $j \in N$ in 8 min.

$$\min_{T\subseteq N}\left\{\sum_{j\in T}c_j \mid \bigcup_{j\in T}S_j = M\right\}$$

regions: $M = \{1, \dots, 5\}$ centers: $N = \{1, \dots, 6\}$ cost of centers: $c_j = 1 \forall j = 1, \dots, 6$ coverages: $S_1 = (1, 2), S_2 = (1, 3, 5), S_3 = (2, 4, 5), S_4 = (3), S_5 = (1), S_6 = (4, 5)$

Example

• regions: $M = \{1, \dots, 5\}$ centers: $N = \{1, \dots, 6\}$ cost of centers: $c_j = 1 \ \forall j = 1, \dots, 6$ coverages: $S_1 = (1, 2), S_2 = (1, 3, 5), S_3 = (2, 4, 5), S_4 = (3), S_5 = (1), S_6 = (4, 5)$

 $A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ S_1 & S_2 & S_3 & S_4 & S_5 & S_6 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 5 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$

As a BIP:

Variables: $\mathbf{x} \in \mathbb{B}^n$, $x_i = 1$ if center *j* is selected, 0 otherwise

Objective:

 $\min\sum_{j=1}^n c_j x_j$

Constraints:

- incidence matrix: $a_{ij} = \begin{cases} 1 \\ 0 \end{cases}$
- $\sum_{j=1}^{n} a_{ij} x_j \ge 1$

Set covering

cover each of M at least once

1. min, \geq

- 2. all RHS terms are 1
- 3. all matrix elements are 1

Set packing

cover as many of M without overlap

1. max, \leq

- 2. all RHS terms are 1
- 3. all matrix elements are 1

 $\begin{array}{l} \min \mathbf{c}^{\mathcal{T}} \mathbf{x} \\ A \mathbf{x} \geq \mathbf{1} \\ \mathbf{x} \in \mathbb{B}^{n} \end{array}$

 $\max \mathbf{c}^T \mathbf{x}$ $A\mathbf{x} \leq \mathbf{1}$ $\mathbf{x} \in \mathbb{B}^n$

Generalization: $RHS \ge 1$ Application examples:

- Aircrew scheduling: M: legs to cover, N: rosters
- Vehicle routing: M: customers, N: routes

Set partitioning

cover exactly once each element of $\ensuremath{\mathcal{M}}$

- 1. max or min, =
- 2. all RHS terms are 1
- 3. all matrix elements are 1

 $\begin{array}{l} \max \mathbf{c}^{\mathcal{T}} \mathbf{x} \\ A \mathbf{x} = \mathbf{1} \\ \mathbf{x} \in \mathbb{B}^{n} \end{array}$

A good written example of how to present a model:

2.1. Notation

Let N be the set of operational flight legs and K the set of aircraft types. Denote by n^k the number of available aircraft of type $k \in K$. Define Ω^k indexed by p, as the set of feasible schedules for aircraft of type $k \in K$ and let index p = 0 denote the empty schedule for an aircraft. Next associate with each schedule $p \in \Omega^k$ the value c_p^k denoting the anticipated profit if this schedule is assigned to an aircraft of type $k \in K$ and a_{ip}^k a binary constant equal to 1 if this schedule covers flight leg $i \in N$ and 0 otherwise. Furthermore, let S be the set of stations and $S^k \subseteq S$ the subset having the facilities to serve aircraft of type $k \in K$. Then, define a_{ip}^k and a_{ip}^k to equal to 1 if schedule $p, p \in \Omega^k$, starts and ends respectively at station $s, s \in S^k$, and 0 otherwise.

Denote by θ_{p}^{k} , $p \in \Omega^{k \setminus \{0\}}$, $k \in K$, the binary decision variable which takes the value 1 if schedule p is assigned to an aircraft of type k, and 0 otherwise. Finally, let $\theta_{0,p}^{k}$, $k \in K$, be a nonnegative integer variable which gives the number of unused aircraft of type k.

2.2. Formulation

Using these definitions, the DARSP can be formulated as:

Maximize
$$\sum_{k \in K} \sum_{p \in \Omega^k} c_p^k \theta_p^k$$
 (1)

subject to:

$$\sum_{k \in K} \sum_{p \in \Omega^k} a_{ip}^k \theta_p^k = 1 \quad \forall i \in N,$$
(2)

$$\sum_{p \in \Omega^k} (d_{sp}^k - o_{sp}^k) \theta_p^k = 0 \quad \forall k \in K, \, \forall s \in S^k,$$
(3)

$$\sum_{p\in\Omega^k}\theta_p^k = n^k \quad \forall k \in K,\tag{4}$$

$$\theta_p^k \ge 0 \quad \forall k \in K, \, \forall p \in \Omega^k,$$
 (5)

$$\theta_p^k \text{ integer } \forall k \in K, \forall p \in \Omega^k.$$
 (6)

The objective function (1) states that we wish to maximize the total anticipated profit. Constraints (2) require that each operational flight leg be covered exactly once. Constraints (3) correspond to the flow conservation constraints at the beginning and the end of the day at each station and for each aircraft type. Constraints (4) limit the number of aircraft of type $k \in K$ that can be used to the number available. Finally, constraints (5) and (6) state that the decision variables are nonnegative integers. This model is a Set Partitioning problem with additional constraints.

[from G. Desaulniers, J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis. Daily Aircraft Routing and Scheduling. Management Science, 1997, 43(6), 841-855]

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling

Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Review

- Assignment Problem
- Set Problems: Knapsack problem, facility location problem

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Matching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in MPerfect (matching): if M covers each vertex in GMaximal (matching): if M cannot be extended any further Maximum (matching): if M covers as many vertices as possible Matchable (graph): if the graph G has a perfect matching

$$\max \sum_{\substack{v \in V \\ \sum_{e \in E: v \in e} x_e \leq 1 \\ x_e \in \{0, 1\} \forall e \in E}} w_e x_e$$

Special case: bipartite matching \equiv assignment problems

Vertex Cover

Select a subset $S \subseteq V$ such that each edge has at least one end vertex in S.

$$\min \sum_{\substack{v \in V \\ x_v + x_u \ge 1 \\ x_v \in \{0, 1\}} \forall u, v \in V, uv \in E$$

Approximation algorithm: set S derived from the LP solution in this way:

 $S_{LP} = \{ v \in V : x_v^* \ge 1/2 \}$

(it is a cover since $x_v^* + x_u^* \ge 1$ implies $x_v^* \ge 1/2$ or $x_u^* \ge 1/2$)

Proposition

The LP rounding approximation algorithm gives a 2-approximation: $|S_{LP}| \le 2|S_{OPT}|$ (at most as bad as twice the optimal solution)

Proof: Let \bar{x} be opt to IP. Then $\sum x_v^* \leq \sum \bar{x}_v$. $|S_{LP}| = \sum_{v \in S_{LP}} 1 \leq \sum_{v \in V} 2x_v^*$ since $x_v^* \geq 1/2$ for each $v \in S_{LP}$ $|S_{LP}| \leq 2 \sum_{v \in V} x_v^* \leq 2 \sum_{v \in V} \bar{x}_v = 2|S_{OPT}|$

Maximum Independent Set

Find the largest subset $S \subseteq V$ such that the induced graph has no edges

$$\max \sum_{\substack{v \in V \\ x_v + x_u \leq 1 \\ x_v = \{0, 1\}}} \sum_{\substack{\forall u, v \in V, uv \in E \\ \forall v \in V}}$$

Optimal sol of LP relaxation sets $x_v = 1/2$ for all variables and has value |V|/2.

What is the value of an optimal IP solution of a complete graph?

LP relaxation gives an O(n)-approximation (almost useless)

Traveling Salesman Problem

- Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in a printed circuit board manufacturing process or car manufacturing process
- *n* locations, *c_{ij}* cost of travel

Variables:

$$x_{ij} = \begin{cases} 1 \\ 0 \end{cases}$$

Objective:

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Constraints:

•

 $\sum_{j:j
eq i} x_{ij} = 1 \ \sum_{i:i
eq j} x_{ij} = 1$

$$\forall i = 1, \dots, n$$

 $\forall j = 1, \dots, n$

• cut set constraints

 $\sum_{i \in S} \sum_{j
ot \in S} x_{ij} \ge 1$

 $\forall S \subset N, S \neq \emptyset$

• subtour elimination constraints

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1$$

 $\forall S \subset N, 2 \leq |S| \leq n-1$

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling

Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Modeling Tricks

Objective function and/or constraints do not appear to be linear?

- Absolute values
- Minimize the largest function value
- Maximize the smallest function value
- Constraints include variable division
- Constraints are either/or
- A variable must take one of several candidate values

Modeling Tricks I

Minimize the largest of a number of function values:

min max{ $f(x_1),\ldots,f(x_n)$ }

• Introduce an auxiliary variable z:

 $\begin{array}{l} \min \quad z \\ \text{s. t. } f(x_1) \leq z \\ \quad f(x_2) \leq z \end{array}$

Modeling Tricks II

Constraints include variable division:

• Constraint of the form

$$\frac{a_1x + a_2y + a_3z}{d_1x + d_2y + d_3z} \le b$$

• Rearrange:

$$a_1x + a_2y + a_3z \le b(d_1x + d_2y + d_3z)$$

which gives:

$$(a_1 - bd_1)x + (a_2 - bd_2)y + (a_3 - bd_3)z \le 0$$

III "Either/Or Constraints"

In conventional mathematical models, the solution must satisfy all constraints. Suppose that your constraints are "either/or":

 $a_1x_1+a_2x_2\leq b_1$ or $d_1x_1+d_2x_2\leq b_2$

Introduce new variable $y \in \{0, 1\}$ and a large number M:

 $\begin{array}{ll} a_1x_1+a_2x_2\leq b_1+My & \mbox{if }y=0 \mbox{ then this is active} \\ d_1x_1+d_2x_2\leq b_2+M(1-y) & \mbox{if }y=1 \mbox{ then this is active} \end{array}$

Binary integer programming allows to model alternative choices:

• Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP. introduce *y* auxiliary binary variable and *M* a big number:

$Ax \leq b + My$	if $y = 0$ then this is active
$A'x \leq b' + M(1-y)$	if $y = 1$ then this is active

IV "Either/Or Constraints"

Generally:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \ldots + a_{1m}x_m \le d_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \ldots + a_{2m}x_m \le d_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \ldots + a_{Nm}x_m \le d_N$$

Exactly K of the N constraints must be satisfied. Introduce binary variables y_1, y_2, \ldots, y_N and a large number M

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \ldots + a_{1m}x_m \leq d_1 + My_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \ldots + a_{2m}x_m \leq d_2 + My_2 \\ \vdots \\ a_{m1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \ldots + a_{Nm}x_m \leq d_N + My_N \end{array}$$

 $y_1 + y_2 + \ldots y_N = N - K$

K of the y-variables are 0, so K constraints must be satisfied

IV "Either/Or Constraints"

At least $h \le k$ of $\sum_{j=1}^{n} a_{ij}x_j \le b_i$, i = 1, ..., k must be satisfied introduce y_i , i = 1, ..., k auxiliary binary variables

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i + M y_i$$
$$\sum_{i} y_i \le k - h$$

V "Possible Constraints Values"

A constraint must take on one of N given values:

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{1} \text{ or}$$

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{2} \text{ or}$$

$$\vdots$$

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{N}$$

Introduce binary variables y_1, y_2, \ldots, y_N :

$$a_1x_1 + a_2x_2 + a_3x_3 + \ldots + a_mx_m = d_1y_1 + d_2y_2 + \ldots d_Ny_N$$

 $y_1 + y_2 + \ldots y_N = 1$

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location

Alternative Formulations

Uncapacited Facility Location (UFL)

Given:

- depots $N = \{1, \ldots, n\}$
- clients $M = \{1, \ldots, m\}$
- f_j fixed cost to use depot j
- transport cost for all orders c_{ij}

Variables: $y_j = \begin{cases} 1 & \text{if depot open} \\ 0 & \text{otherwise} \end{cases}$, x_{ij} fraction of demand of i satisfied by j**Objective:** $\min \sum_{i \in \mathcal{N}} \sum_{i \in \mathcal{N}} c_{ij} x_{ij} + \sum_{i \in \mathcal{N}} f_j y_j$

Constraints:

 $\sum_{j=1}^{n} x_{ij} = 1$ $\sum_{i \in M} x_{ij} \le m y_j$ $\ensuremath{\text{Task:}}$ Which depots to open and which depots serve which client

$$\forall i = 1, \ldots, m$$

$$\forall j \in N$$

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations

Good and Ideal Formulations

Definition (Formulation)

A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)

Given a set $X \subseteq \mathbb{Z}^n$ the convex hull of X is defined as:

$$\operatorname{conv}(X) = \left\{ \mathbf{x} : \mathbf{x} = \sum_{i=1}^{t} \lambda_i \mathbf{x}^i, \sum_{i=1}^{t} \lambda_i = 1, \lambda_i \ge 0, \text{ for } i = 1, \dots, t, \right.$$
for all finite subsets $\{\mathbf{x}^1, \dots, \mathbf{x}^t\}$ of X

Proposition

conv(X) is a polyhedron (ie, representable as $Ax \leq b$)

Proposition

Extreme points of conv(X) all lie in X

Hence:

```
\max{\mathbf{c}^{\mathsf{T}}\mathbf{x}:\mathbf{x}\in X} \equiv \max{\mathbf{c}^{\mathsf{T}}\mathbf{x}:\mathbf{x}\in \mathsf{conv}(X)}
```

However it might require exponential number of inequalities to describe conv(X) What makes a formulation better than another?

 $X \subseteq \operatorname{conv}(X) \subseteq P_2 \subset P_1$ $P_2 \text{ is better than } P_1$

Definition

Given a set $X \subseteq \mathbb{R}^n$ and two formulations P_1 and P_2 for X, P_2 is a better formulation than P_1 if $P_2 \subset P_1$

Example

 $\begin{array}{l} P_1 = \mathsf{UFL} \text{ with } \sum_{i \in M} x_{ij} \leq m y_j \quad \forall j \in N \\ P_2 = \mathsf{UFL} \text{ with } x_{ij} \leq y_j \quad \forall i \in M, j \in N \end{array}$

 $P_2 \subset P_1$

- $P_2 \subseteq P_1$ because summing $x_{ij} \leq y_j$ over $i \in M$ we obtain $\sum_{i \in M} x_{ij} \leq my_j$
- $P_2 \subset P_1$ because there exists a point in P_1 but not in P_2 : $m = 6 = 3 \cdot 2 = k \cdot n$ $x_{10} = 1, x_{20} = 1, x_{30} = 1,$ $x_{41} = 1, x_{51} = 1, x_{61} = 1$ $\sum_i x_{i0} \le 6y_0 \ y_0 = 1/2$ $\sum_i x_{i1} \le 6y_1 \ y_1 = 1/2$

Resume

1. Integer Programming

2. Modeling

Assignment Problem Knapsack Problem Set Problems

3. More on Modeling

Graph Problems Modeling Tricks

4. Formulations

Uncapacited Facility Location Alternative Formulations