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Discrete Optimization

• Often we need to deal with integral inseparable quantities

• Sometimes rounding can go

• Other times rounding not feasible: eg, presence of a bus on a line is 0.3...
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Integer Linear Programming

Linear Objective
Linear Constraints
but! integer variables

The world is not linear: "OR is the art and
science of obtaining bad answers to questions to
which otherwise worse answers would be given"

max cT x
Ax ≤ b
x ≥ 0

max cT x
Ax ≤ b
x ≥ 0
x integer

max cT x
Ax ≤ b
x ∈ {0, 1}n

max cT x + hT y
Ax + Gy ≤ b

x ≥ 0
y ≥ 0
y integer

Linear Programming
(LP)

Integer (Linear) Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer (Linear)
Programming (MILP)

max f (x)
g(x) ≤ b

x ≥ 0
Non-linear Programming (NLP)
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Recall:

• Z set of integers

• Z+ set of positive integer

• Z+
0 set of nonnegative integers ({0} ∪ Z+)

• N0 set of natural numbers, ie, nonnegative integers {0, 1, 2, 3, 4, ...}

6



Combinatorial Optimization Problems

Definition (Combinatorial Optimization Problem (COP))

Input: Given a finite set N = {1, . . . , n} of objects,
weights cj for all j ∈ N,
a collection of feasible subsets of N, F

Task: Find a minimum weight feasible subset, ie,

min
S⊆N

∑
j∈S

cj | S ∈ F


Many COP can be modelled as IP or BIP.

Typically: incidence vector of S , xS ∈ Bn: xSj =

{
1 if j ∈ S

0 otherwise
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Rounding

max 100x1 + 64x2
50x1 + 31x2 ≤ 250
3x1 − 2x2 ≥ −4

x1, x2 ∈ Z+

LP optimum (376/193, 950/193)
IP optimum (5, 0)

x1 + 0.64x2 − 4

3x1 − 2x2 + 4

50x1 + 31x2 − 250

x1

x2

Note: rounding
does not help in the
example above!

 feasible region convex but not continuous: Now the optimum can be on the border (vertices)
but also internal.

Possible way: solve the relaxed problem.
• If solution is integer, done.
• If solution is rational (never irrational) try rounding to the nearest integers (but may exit
feasibility region)
if in R2 then 22 possible roundings (up or down)
if in Rn then 2n possible roundings (up or down)
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Cutting Planes

max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2 integers

x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1 + x2 = 5

x1

x2
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Branch and Bound

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1

x2
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4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1 = 1
x2

x1

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1
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4.8
−∞

4.5
−∞

3
3

x1=1
x2=1

x2 ≤ 1

4
4

x1=0
x2=2

x2 ≥ 2

x1 ≤ 1

2
2

x1=2
x2=0

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1
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Mathematical Programming: Modeling

• Find out exactly what the decision maker needs to know:

• which investment?

• which product mix?

• which job j should a person i do?

• Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding
to the needs and Known Parameters corresponding to given data.

• Formulate Objective Function computing the benefit/cost

• Formulate mathematical Constraints indicating the interplay between the different variables.

14



How to “build” a constraint

• Formulate relationship between the variables in plain words
• Then formulate your sentences using logical connectives and, or, not, implies
• Finally convert the logical statement to a mathematical constraint.

Example
• “The power plant must not work in both of two neighbouring time periods”
• on/off is modelled using binary integer variables
• xi = 1 or xi = 0
• xi = 1 implies ⇒ xi+1 = 0
• xi + xi+1 ≤ 1
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The Assignment Problem

Problem
Common application: Assignees are being assigned to perform tasks.

Suppose we have n persons and n jobs
Each person has a certain proficiency at each job.

Formulate a mathematical model that can be used to find an assignment that maximizes the total
proficiency.
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The Assignment Problem
Model

Decision Variables:

xij =

{
1 if person i is assigned job j
0 otherwise, for i , j = 1, 2, . . . , n

Objective Function:

max
n∑

i=1

n∑
j=1

ρijxij

where ρij is person i ’s proficiency at job j
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The Assignment Problem
Model

Constraints:
Each person is assigned one job:

n∑
j=1

xij = 1 for all i

e.g. for person 1 we get x11 + x12 + x13 + · · ·+ x1n = 1

Each job is assigned to one person:

n∑
i=1

xij = 1 for all j

e.g. for job 1 we get x11 + x21 + x31 + · · ·+ xn1 = 1
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The Knapsack Problem

Problem ..

Input: Given a set of n items, each with a value vi and weight wi (i = 1, . . . , n)

Task: determine the number of each items to include in a collection so that the total weight is less
than a given limit, W , and the total value is as large as possible.

The “knapsack” name derives from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most useful items.

Assuming we can take at most one of any item and that
∑

i wi >W , formulate a mathematical
model to determine which items give the largest value.

Model used, eg, in capital budgeting, project selection, etc.
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The Knapsack Problem

Decision Variables:

xi =

{
1 if item i is taken
0 otherwise, for i = 1, 2 . . . , n

Objective Function:

max
n∑

i=1

vixi

Constraints:
Knapsack capacity restriction:

n∑
i=1

wixi ≤W
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Set Covering

Problem
Given: a set of regions, a set of possible construction locations for emergency centers, regions that
can be served in less than 8 minutes, cost of installing an emergency center in each location.

Task: decide where to install a set of emergency centers such that the total cost is minimized and
all regions are safely served

As a COP: M = {1, . . . ,m} regions, N = {1, . . . , n} centers, Sj ⊆ M regions serviced by
j ∈ N in 8 min.

min
T⊆N

∑
j∈T

cj |
⋃
j∈T

Sj = M


regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)
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Example

• regions: M = {1, . . . , 5}
centers: N = {1, . . . , 6}
cost of centers: cj = 1 ∀j = 1, . . . , 6
coverages: S1 = (1, 2),S2 = (1, 3, 5),S3 = (2, 4, 5),S4 = (3),S5 = (1),S6 = (4, 5)

•

A =

x1 x2 x3 x4 x5 x6
S1 S2 S3 S4 S5 S6


1 1 1 0 0 1 0
2 1 0 1 0 0 0
3 0 1 0 1 0 0
4 0 0 1 0 0 1
5 0 1 1 0 0 1
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As a BIP:

Variables:
x ∈ Bn, xj = 1 if center j is selected, 0 otherwise

Objective:

min
n∑

j=1

cjxj

Constraints:

• incidence matrix: aij =

{
1
0

•
∑n

j=1 aijxj ≥ 1
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Set covering
cover each of M at least once

1. min, ≥
2. all RHS terms are 1
3. all matrix elements are 1

Set packing
cover as many of M without
overlap

1. max, ≤
2. all RHS terms are 1
3. all matrix elements are 1

Set partitioning
cover exactly once each element
of M

1. max or min, =

2. all RHS terms are 1
3. all matrix elements are 1

min cTx
Ax ≥ 1
x ∈ Bn

max cTx
Ax ≤ 1
x ∈ Bn

max cTx
Ax = 1
x ∈ Bn

Generalization: RHS ≥ 1
Application examples:

• Aircrew scheduling: M: legs to cover, N: rosters
• Vehicle routing: M: customers, N: routes

27



A good written example of how to present a model:

[from G. Desaulniers, J. Desrosiers, Y. Dumas, M.M. Solomon and F.
Soumis. Daily Aircraft Routing and Scheduling. Management Science, 1997,

43(6), 841-855]
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Review

• Assignment Problem

• Set Problems: Knapsack problem, facility location problem
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Matching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M

Perfect (matching): if M covers each vertex in G

Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max
∑
v∈V

wexe∑
e∈E :v∈e

xe ≤ 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Special case: bipartite matching ≡ assignment problems
32



Vertex Cover
Select a subset S ⊆ V such that each edge has at least one end vertex in S .

min
∑
v∈V

xv

xv + xu ≥ 1 ∀u, v ∈ V , uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Approximation algorithm: set S derived from the LP solution in this way:

SLP = {v ∈ V : x∗v ≥ 1/2}
(it is a cover since x∗v + x∗u ≥ 1 implies x∗v ≥ 1/2 or x∗u ≥ 1/2)

Proposition

The LP rounding approximation algorithm gives a 2-approximation: |SLP | ≤ 2|SOPT | (at most as
bad as twice the optimal solution)

Proof: Let x̄ be opt to IP. Then
∑

x∗v ≤
∑

x̄v .
|SLP | =

∑
v∈SLP

1 ≤
∑

v∈V 2x∗v since x∗v ≥ 1/2 for each v ∈ SLP
|SLP | ≤ 2

∑
v∈V x∗v ≤ 2

∑
v∈V x̄v = 2|SOPT |
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Maximum Independent Set

Find the largest subset S ⊆ V such that the induced graph has no edges

max
∑
v∈V

xv

xv + xu ≤ 1 ∀u, v ∈ V , uv ∈ E
xv = {0, 1} ∀v ∈ V

Optimal sol of LP relaxation sets xv = 1/2 for all variables and has value |V |/2.

What is the value of an optimal IP solution of a complete graph?

LP relaxation gives an O(n)-approximation (almost useless)
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Traveling Salesman Problem

• Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in
a printed circuit board manufacturing process or car manufacturing process

• n locations, cij cost of travel

Variables:

xij =

{
1
0

Objective:

n∑
i=1

n∑
j=1

cijxij
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Constraints:

• ∑
j :j 6=i

xij = 1 ∀i = 1, . . . , n

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊂ N,S 6= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1
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Modeling Tricks

Objective function and/or constraints do not appear to be linear?
• Absolute values
• Minimize the largest function value
• Maximize the smallest function value
• Constraints include variable division
• Constraints are either/or
• A variable must take one of several candidate values
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Modeling Tricks I

Minimize the largest of a number of function values:

min max{f (x1), . . . , f (xn)}

• Introduce an auxiliary variable z :
min z

s. t. f (x1) ≤ z

f (x2) ≤ z
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Modeling Tricks II

Constraints include variable division:
• Constraint of the form

a1x + a2y + a3z

d1x + d2y + d3z
≤ b

• Rearrange:

a1x + a2y + a3z ≤ b(d1x + d2y + d3z)

which gives:

(a1 − bd1)x + (a2 − bd2)y + (a3 − bd3)z ≤ 0
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III “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are “either/or”:

a1x1 + a2x2 ≤ b1 or
d1x1 + d2x2 ≤ b2

Introduce new variable y ∈ {0, 1} and a large number M:

a1x1 + a2x2 ≤ b1 + My if y = 0 then this is active
d1x1 + d2x2 ≤ b2 + M(1− y) if y = 1 then this is active
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III “Either/Or Constraints”

Binary integer programming allows to model alternative choices:

• Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M a big number:

Ax ≤ b + My if y = 0 then this is active
A′x ≤ b′ + M(1− y) if y = 1 then this is active
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IV “Either/Or Constraints”
Generally:

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN

Exactly K of the N constraints must be satisfied.
Introduce binary variables y1, y2, . . . , yN and a large number M

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1 + My1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2 + My2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN + MyN

y1 + y2 + . . . yN = N − K

K of the y -variables are 0, so K constraints must be satisfied
43



IV “Either/Or Constraints”

At least h ≤ k of
n∑

j=1
aijxj ≤ bi , i = 1, . . . , k must be satisfied

introduce yi , i = 1, ..., k auxiliary binary variables

n∑
j=1

aijxj ≤ bi + Myi∑
i

yi ≤ k − h
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V “Possible Constraints Values”

A constraint must take on one of N given values:

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1 or
a1x1 + a2x2 + a3x3 + . . .+ amxm = d2 or

...
a1x1 + a2x2 + a3x3 + . . .+ amxm = dN

Introduce binary variables y1, y2, . . . , yN :

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1y1 + d2y2 + . . . dNyN

y1 + y2 + . . . yN = 1
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Uncapacited Facility Location (UFL)
Given:

• depots N = {1, . . . , n}
• clients M = {1, . . . ,m}
• fj fixed cost to use depot j

• transport cost for all orders cij

Task: Which depots to open and which depots serve
which client

Variables: yj =

{
1 if depot open

0 otherwise
, xij fraction of demand of i satisfied by j

Objective:

min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

Constraints:
n∑

j=1

xij = 1 ∀i = 1, . . . ,m

∑
i∈M

xij ≤ myj ∀j ∈ N
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Good and Ideal Formulations

Definition (Formulation)

A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp if and only if X = P ∩ (Zn × Rp)

That is, if it does not leave out any of the solutions of the feasible region X .

There are infinite formulations

Definition (Convex Hull)

Given a set X ⊆ Zn the convex hull of X is defined as:

conv(X ) =
{
x : x =

t∑
i=1

λixi ,
t∑

i=1

λi = 1, λi ≥ 0, for i = 1, . . . , t,

for all finite subsets {x1, . . . , xt} of X
}
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Proposition

conv(X ) is a polyhedron (ie, representable as Ax ≤ b)

Proposition

Extreme points of conv(X ) all lie in X

Hence:

max{cTx : x ∈ X} ≡ max{cTx : x ∈ conv(X )}
However it might require exponential number of inequalities to describe conv(X )
What makes a formulation better than another?

X ⊆ conv(X ) ⊆ P2 ⊂ P1

P2 is better than P1

Definition
Given a set X ⊆ Rn and two formulations P1 and P2 for X , P2 is a better formulation than P1 if
P2 ⊂ P1
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Example

P1 = UFL with
∑

i∈M xij ≤ myj ∀j ∈ N
P2 = UFL with xij ≤ yj ∀i ∈ M, j ∈ N

P2 ⊂ P1

• P2 ⊆ P1 because summing xij ≤ yj over i ∈ M we obtain
∑

i∈M xij ≤ myj

• P2 ⊂ P1 because there exists a point in P1 but not in P2: m = 6 = 3 · 2 = k · n
x10 = 1, x20 = 1, x30 = 1,
x41 = 1, x51 = 1, x61 = 1

∑
i xi0 ≤ 6y0 y0 = 1/2∑
i xi1 ≤ 6y1 y1 = 1/2
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