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Diagonalization

Eigenvalues and Eigenvectors Applications

(All matrices in this lecture are square n x n matrices and all vectors in R")

Definition
Let A be a square matrix.

e The number )\ is said to be an eigenvalue of A if for some non-zero vector x,

Ax = \x

e Any non-zero vector x for which this equation holds is called
eigenvector for eigenvalue A or
eigenvector of A corresponding to eigenvalue A




Finding Eigenvalues

Determine solutions to the matrix equation Ax = Ax

Let's put it in standard form, using Ax = \/x:

(A—AD)x=0

Bx = 0 has solutions other than x = 0 precisely when det(B) = 0.

e hence we want det(A — \/) = 0:

Definition (Charachterisitc polynomial)

The polynomial |A — Al is called the characteristic polynomial of A, and
the equation |A — \/| = 0 is called the characteristic equation of A.
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Example

7 —15
A=l

7 —15 10 7—X =15
A_M:{z —4}_%0 1}:[ 2 —4—>\]
The characteristic polynomial is

—15
|A—)\I_’ I

— (7= A)(—4 — A) +30
=X -3)\+2

The characteristic equation is
M3\ 42=A-1)(A-2)=0

hence 1 and 2 are the only eigenvalues of A
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Diagonalization

Finding Eigenvectors P
e Find non-trivial solution to (A — A/)x = 0 corresponding to A

e zero vectors are not eigenvectors!

Example
7 —15
A=z 2]
Eigenvector for A = 1:
_[6 —15]  rRer [1 —2 . [5
A—I_{2 _5}—>--~—>[0 O] v_t[J,teR

Eigenvector for \ = 2:

5 —15 RREF 1 -3 3
A—2I_[2 6}_)”'_)[0 O} v—tH,teR




Example

404
A=104 4
448

The characteristic equation is

4-X 0 4
0 4-) 4
4 4 8-\

A= \| =

=@ -=XN)((—4—-X)(B8—=X)—16) +4(—4(4— X))
=4 -N((—4-2NB—-X)—16)—16(4—N)

=4 -N((-4-2)(B—X)—16-16)

=4 -\ —-12)

hence the eigenvalues are 4,0, 12.
Eigenvector for A\ = 4, solve (A —4/)x = 0:

Dlagonallzatlon
Applications

sy

-1
,teR

o




Example

—3 -1 -2
A=|1 -1 1
1 1 0

The characteristic equation is
-3-Xx -1 =2
A-X| =] 1 -1-x 1
1 1 -
=(=3-NN+A=-1)+(=A—1)=2(2+ )
= (N +4X24+5)04+2)
if we discover that —1 is a solution then (A + 1) is a factor of the polynomial:
—(A+1)(arN? + bA+¢)
from which we can find a=1,c=2,b =3 and

~A+D)A+2)A+1) = -(A+1)*(A+2)

the eigenvalue —1 has multiplicity 2




Diagonalization

Eigenspaces e

e The set of eigenvectors corresponding to the eigenvalue \ together with the zero vector 0, is a
subspace of R".
because it corresponds with null space N(A — /)

Definition (Eigenspace)

If Ais an n x n matrix and A is an eigenvalue of A, then the eigenspace of the eigenvalue ) is the
nullspace N(A — Al) of R".

e theset S = {x | Ax = Ax} is always a subspace but only if A is an eigenvalue then dim(S) > 1.
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Diagonalization

Eigenvalues and the Matrix Applications
Links between eigenvalues and properties of the matrix

e let A be an n x n matrix, then the characteristic polynomial has degree n:
p(A\) = |A=M|=(=1)"(\"+a, 1\ +--- 4+ a)
e in terms of eigenvalues A1, Ao, ..., \, the characteristic polynomial is:

p(N) = [A = M| = (=1)"(A = M)A = Aa) - (A = An)

Theorem

The determinant of an n x n matrix A is equal to the product of its eigenvalues.

Proof: if A = 0 in the second point above, then

,D(O) = |A| = (—1)"(—1)”)\1)\2 . )\n = )\1)\2 . )\n
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Diagonalization

Diagonalization Ao

Recall: Square matrices are similar if there is an invertible matrix P such that P~1AP = M.

Definition (Diagonalizable matrix)

The matrix A is diagonalizable if it is similar to a diagonal matrix; that is,
if there is a diagonal matrix D and an invertible matrix P such that P~1AP = D

Example
7 —15
A=[3 2]

3 L3 How was such a matrix P found?
_ |5 -1 |
e P

When is a matrix diagonalizable?
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General Method

e Let's assume A is diagonalizable, then P~'AP = D where

M 0 -+ 0
0 A\ -~ O
D =diag(A1, A2, ..., A\p) = )
0 0 .0
0 0 --- X\,
e AP = PD
AP:A[vl v,,} :[Avl Av,,}
A1 O 0
0 X 0
PD = [vl v,,] ) = [Alvl )\,,v,,]
0 0 .0
0 0 -+ A\,

e Hence: Avi = A\1vy,  Avs = \ovo, Av, = AV,

Diagonalization
Applications

14



Diagonalization
Applications

e since P! exists then none of the above Av; = \;v; has 0 as a solution or else P would have a
zero column.

e this is equivalent to )\; and v; are eigenvalues and eigenvectors and that they are linearly
independent.

e the converse is also true: suppose A has n lin. indep. eigenvectors and P be the matrix whose
columns are the eigenvectors (then P is invertible)

Av = A\v implies that AP = PD
P~1AP = P~1PD =D
Theorem

An n x n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

An n x n matrix A is diagonalizable if and only if there is a basis of R" consisting only of
eigenvectors of A.
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Example

7 15
Sl i

and 1 and 2 are the eigenvalues with eigenvectors:

A




Example
40 4
A=10 4 4
4 4 8

has eigenvalues 4,0, 12 and corresponding eigenvectors:

-1 -1 1

Vi = 1 s Vo = -1 s V3 — 1
0 1 2

[—1 —1 1] [4 0 0]
P=]1 —-11 D=100 0
|0 1 2] 00 12]

We can choose any order, provided we are consistent:

1 —1 1] 000
P=|-1 11 D=104 0
|1 0 2] 0012

Diagonalization
Applications




Diagonalization

Geometrical Interpretation Applications

Let's look at A as the matrix representing a linear transformation T = T, in standard
coordinates, ie, T(x) = Ax.

let’s assume A has a set of linearly independent vectors B = {vq,va,...,v,} corresponding to
the eigenvalues A1, Ao, .. ., An, then B is a basis of R”.

what is the matrix representing T wrt the basis B?
Aig.g = P 'AP

where P = [vl Vo - vn} (check earlier theorem today)

hence, the matrices A and A[B,B] are similar, they represent the same linear transformation:
e A in the standard basis

o A g in the basis B of eigenvectors of A

Ag.gl = [[T(vi)ls [T(v2)lz -+ [T(va)]s] ~ for those vectors in particular
T(vi) = Av; = A\jv; hence diagonal matrix ~ Az g = D
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e What does this tell us about the linear transformation 7,7

by
by
For any x € R" Xlg=| .
bn] g
its image in T is easy to calculate in B coordinates:
A0 - 0 by A1by
7] 0 X - 0 |b2 A2bo
X)|B = . . = .
0 0 .0 : :
0 0 An 1bn] g Anbn] g

e it is a stretch in the direction of the eigenvector v; by a factor \;

e the line x = tv;, t € R is fixed by the linear transformation T in the sense that every point on
the line is stretched to another point on the same line.
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Similar Matrices Disgonalization

Applications
Geometric interpretation
e Let Aand B= P~ 1AP, ie, be similar.

e geometrically: T, is a linear transformation in standard coordinates
Tg is the same linear transformation T in coordinates wrt the basis given by the columns of P.

e we have seen that T has the intrinsic property of fixed lines and stretches. This property does
not depend on the coordinate system used to express the vectors. Hence:
Theorem

Similar matrices have the same eigenvalues, and the same corresponding eigenvectors expressed in
coordinates with respect to different bases.

Algebraically:
e A and B have same polynomial and hence eigenvalues

|B—Al| =|P7YAP — | = |P7*AP — AP 1/IP|
= |P~Y A= X)P| = |P~1|A—\||P]
= A= )|
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Diagonalization

Diagonalizable matrices ok

Example

4 1
-4
has characteristic polynomial A\ — 6\ + 9 = (\ — 3).
The eigenvectors are:

5 A= [

hence any two eigenvectors are scalar multiple of each others and are linearly dependent.

The matrix A is therefore not diagonalizable.
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Example

=15

has characteristic equation A\? + 1 and hence it has no real eigenvalues.

Diagonalization
Applications
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Diagonalization
Applications

Theorem

If an n x n matrix A has n different eigenvalues then (it has a set of n linearly independent
eigenvectors) is diagonalizable.

e Proof by contradiction

e n lin indep. is necessary condition but n different eigenvalues not.

Example

3 -11
A=10 2 0

1 -13
the characteristic polynomial is —(\ — 2)?(A — 4). Hence 2 has multiplicity 2. Can we find two
corresponding linearly independent vectors?
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Diagonalization
Applications

Example (cntd)

-1
0
-1

-1

RRER 0
0

(A—2l) =

1
x=s5|1
0

the two vectors are lin. indep.

1 -1 1 e |10 -1 1
(A—4h=10 —2 0| ="+ =]01 0 vs= [0
1 -1 -1 00 0 1

0

0

2

=

1
0
0

=
1
1
O O

-1
+t[0] =svi+tva s, teR
1

11 -1 40
P=1[01 0 P7IAP = [0 2
10 1 00




Diagonalization
Applications

Example

-3 -1 -2
A=1|1 -1 1
1 1 0

Eigenvalue \; = —1 has multiplicity 2; A\, = —2.

-2 -1 =2 101
A+N=1]1 0 1| S lo1o0
1 1 1 000
The rank is 2.
The null space (A + 1) therefore has dimension 1 (rank-nullity theorem).
We find only one linearly independent vector: x = [~1,0,1]".

Hence the matrix A cannot be diagonalized.
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Diagonalization

Multiplicity o et

Definition (Algebraic and geometric multiplicity)

An eigenvalue \g of a matrix A has

e algebraic multiplicity k if k is the largest integer such that (A — o)~ is a factor of the
characteristic polynomial

e geometric multiplicity k if k is the dimension of the eigenspace of Ao, ie, dim(N(A — X\ol))

Theorem

For any eigenvalue of a square matrix, the geometric multiplicity is no more than the algebraic
multiplicity

Theorem
A matrix is diagonalizable if and only if all its eigenvalues are real numbers and, for each

eigenvalue, its geometric multiplicity equals the algebraic multiplicity.
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Diagonalization

Summary

e Characteristic polynomial and characteristic equation of a matrix
e eigenvalues, eigenvectors, diagonalization

e finding eigenvalues and eigenvectors

e eigenspace

o diagonalize a diagonalizable matrix

e conditions for digonalizability

o diagonalization as a change of basis, similarity

e geometric effect of linear transformation via diagonalization

28



Diagonalization

O U t I i n e Applications

2. Applications



Diagonalization

Uses of Diagonalization Anplicasions

find powers of matrices
e solving systems of simultaneous linear difference equations

Markov chains

systems of differential equations



Diagonalization

Powers of Matrices A et

A" = AAA- - A
—_——

n times

If we can write: P~1AP = D then A = PDP~1
A" = AAA.--A
—_—

n times
= (PDP~Y)(PDP~Y)(PDP~Y) ... (PDP™Y)
n times
= PD(P~*P)D(P~tP)D(P~*P)..-DP~!
=PDDD---D P
N—_———

n times

— pD"P~1

then closed formula to calculate the power of a matrix.
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Difference equations Arrhcasions

o A difference equation is an equation linking terms of a sequence to previous terms, eg:
Xey1 = 5x; — 1

is a first order difference equation.

e a first order difference equation can be fully determined if we know the first term of the
sequence (initial condition)

e a solution is an expression of the terms x;

Xt11 = aXy — Xy = atXO

32



Diagonalization

System of Difference equations Arications

Suppose the sequences x; and y; are related as follows:
XQZ]..,yo:].fOI’tZO

Xey1 = Ix¢ — 15y,
Yir1 = 2x: — 4y:

Coupled system of difference equations.
Let then x;.1 = Ax; and xo = [1,1]" and
Xt 7 —15
Xt = _
' L’J A= [2 4}
Then:
X1 = AXO

Xy = AXl = A(AXO) = A2X0
X3 = AX2 = A(A2X0) = A3X0

x; = Alxg
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Markov Chains A et

e Suppose two supermarkets compete for customers in a region with 20000 shoppers.
e Assume no shopper goes to both supermarkets in a week.

e The table gives the probability that a shopper will change from one to another supermarket:
From A From B From none

To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

(note that probabilities in the columns add up to 1)

e Suppose that at the end of week 0 it is known that 10000 went to A, 8000 to B and 2000 to
none.

e Can we predict the number of shoppers at each supermarket in any future week t? And the
long-term distribution?
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Applications

Formulation as a system of difference equations:

e Let x; be the percentage of shoppers going in the two supermarkets or none

e then we have the difference equation:

X; = AX;_1

0.70 0.15 0.30 Xt
A= 10.20 0.80 0.20] , Xe = |Vt
0.10 0.05 0.50 Zt

e a Markov chain (or process) is a closed system of a fixed population distributed into n
diffrerent states, transitioning between the states during specific time intervals.

e The transition probabilities are known in a transition matrix A (coefficients all non-negative +
sum of entries in the columns is 1)

e state vector x;, entries sum to 1.

35



Diagonalization
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A solution is given by (assuming A is diagonalizable):

x: = Afxg = (PD*P~1)xg

T : . .
let xo = Pzo and zg = P 'xo = [by by b,| be the representation of xo in the basis of
eigenvectors, then:

Xt = PDtP71X() = bl)\ivl + b2)\5V2 + -4 b,,)\ZV,,

x¢ = by (1)'vy + by(0.6) vz + - - - + by(0.4)"v,

lim;, ..o 1" =1, lim; . 0.6® = 0 hence the long-term distribution is
3 0.375
1 0.125

Th.: if A is the transition matrix of a regular Markov chain, then A = 1 is an eigenvalue of
multiplicity 1 and all other eigenvalues satisfy || < 1
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