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Definition (Matrix)

A matrix is a rectangular array of numbers or symbols. It can be written as



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




• We denote this array by a single letter A or by (aij) and

• we say that A has m rows and n columns, or that it is an m × n matrix.

• The size of A is m × n.

• The number aij is called the (i , j) entry or scalar.
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• A square matrix is an n × n matrix.

• The diagonal of a square matrix is the list of entries a11, a22, . . . , ann

• The diagonal matrix is a matrix n × n with aij = 0 if i 6= j (ie, a square matrix with all the
entries which are not on the diagonal equal to 0):




a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · amn




Definition (Equality)

Two matrices are equal if they have the same size and if corresponding entries are equal. That is, if
A = (aij) and B = (bij) are both m × n matrices, then:

A = B ⇐⇒ aij = bij 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Definition (Addition)

If A = (aij) and B = (bij) are both m × n matrices, then

A+ B = (aij + bij) 1 ≤ i ≤ m, 1 ≤ j ≤ n

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn







matrix A

+

b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn







matrix B

c11 c12 · · · c1n
c21 c22 · · · c2n

...
...

. . .
...

cm1 cm2 · · · cmn







matrix C = A+B

+++

Eg:

A+ B =

[
3 1 2
0 5 −2

]
+

[
−1 1 4
2 −3 1

]
=?

element-wise operation
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Definition (Scalar Multiplication)

If A = (aij) is an m × n matrix and λ ∈ R, then

λA = (λaij) 1 ≤ i ≤ m, 1 ≤ j ≤ n

Eg:

−2A =?

element-wise operation
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Two matrices can be multiplied together, depending on the size of the matrices

Definition (Matrix Multiplication)

If A is an m × n matrix and B is an n × p matrix, then the product is the matrix AB = C = (cij)
with

cij = ai1b1j + ai2b2j + · · ·+ ainbnj .


ai1 ai2 · · · ain







b1j
b2j
...
bnj


 What is the size of C?
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a11 . . . a1k . . . a1p

...
. . .

...
...

...

ai 1; . . . ai k ; . . . ai p ;

...
...

...
. . .

...

an1 . . . ank . . . anp







A : n rows p columns

b11 . . . b1 j ; . . . b1q

...
. . .

...
...

...

bk1 . . . bk j ; . . . bkq

...
...

...
. . .

...

bp1 . . . bp j ; . . . bpq







B : p rows q columns

c11 . . . c1 j . . . c1q

...
. . .

...
...

...

ci 1 . . . ci j ; . . . ci q

...
...

...
. . .

...

cn1 . . . cnk . . . cnq







C = A×B : n rows q columns

a i1
×b 1 j

a ik
×b k j

a i p
×b p j

+ . . .+

+ . . .+

Not an element-wise
operation!
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AB =




1 1 1
2 0 1
1 2 4
2 2 −1







3 0
1 1
−1 3


 =




3 4
5 3
1 14
9 −1




(2)(3) + (0)(1) + (1)(−1) = 5

The motivation behind this definition is that it allows to deal conveniently with several tasks in
linear algebra. Think about the way we rewrote a system of linear equations using this definition.
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• AB 6= BA in general, ie, not commutative
try with the example of previous slide...

A =

[
2 1 3
1 2 1

]
B =



3 1
1 0
1 1


 AB is 2× 2 and BA is 3× 3

A =

[
1 2
3 4

]
B =

[
1 1
0 1

]
ok sizes but AB 6= BA
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Matrices are useful because they provide compact notation and we can perform algebra with them

Bear in mind to use only operations that are defined. In the following rules, the sizes are dictated
by the operations being defined.

• commutative A+ B = B + A . Proof?

• associative:

• (A+ B) + C = A+ (B + C)

• λ(AB) = (λA)B = A(λB)

• (AB)C = A(BC)

Size?

• distributive:

• A(B + C) = AB + AC

• (B + C)A = BA+ CA

• λ(A+ B) = λA+ λB

Why both first two rules?
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Definition (Zero Matrix)

A zero matrix, denoted 0, is an m × n matrix with all entries zero:



0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




• additive identity: A− A = 0
• A+ 0 = A
• A− A = 0
• 0A = 0,A0 = 0
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Definition (Identity Matrix)

The n × n identity matrix, denoted In or I is the diagonal matrix with aii = 1: zero:

I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




• multiplicative identity (like 1 does for scalars)

• AI = A and IA = A

A of size m × n.
What size is I?
 the identity matrix must be a square
matrix

Exercise: 3A+ 2B = 2(B − A+ C )
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• If AB = AC can we conclude that B = C?

A =

[
0 0
1 1

]
, B =

[
1 −1
3 5

]
, C =

[
8 0
−4 4

]

AB = AC =

[
0 0
4 4

]

but hold on, this might be just a lucky case

• A+ 5B = A+ 5C =⇒ B = C
addition and scalar multiplication have inverses (−A and 1/c)

• Is there a multiplicative inverse?
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Definition (Inverse Matrix)

The n × n matrix A is invertible if there is a matrix B such that

AB = BA = I

where I is the n× n identity matrix. The matrix B is called the inverse of A and is denoted by A−1.

A =

[
1 2
3 4

]
, B =

[
−2 1
3/2 −1/2

]

Theorem

If A is an n × n invertible matrix, then the matrix A−1 is unique.

Proof: Assume A has two inverses B,C so AB = BA = I and AC = CA = I . Consider the product
CAB:

CAB = C (AB) = CI = C associativity + AB = I

CAB = (CA)B = IB = B associativity + CA = I
16
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• If a matrix has an inverse we say that it is invertible or non-singular
If a matrix has no inverse we say that it is non-invertible or singular
Eg:

[
0 0
1 1

] [
a b
c d

]
6=
[
1 0
0 1

]

• If

A =

[
a b
c d

]
, ad − bc 6= 0

then A has the inverse

A−1 =
1

ad − bc

[
d −b
−c a

]
ad − bc 6= 0 check that this is true

• The scalar ad − bc is called determinant of A and denoted |A|.
17
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Back to the question:

• If AB = AC can we conclude that B = C?
If A is invertible then the answer is yes:

A−1AB = A−1AC =⇒ IB = IC =⇒ B = C

• But AB = CA then we cannot conclude that B = C .
Note: the operation of matrix division is not defined!
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Let A be invertible =⇒ A−1 exists

• (A−1)−1 = A

• (λA)−1 = 1
λA

−1

the inverse of the matrix (λA) is a matrix C that satisfies (λA)C = C (λA) = I .
Using matrix algebra:

(λA)

(
1
λ
A−1

)
= λ

1
λ
AA−1 = I and

(
1
λ
A−1

)
(λA) =

1
λ
λA−1A = I

• (AB)−1 = B−1A−1
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For A an n × n matrix and r ∈ N

Ar = AA . . .A︸ ︷︷ ︸
r times

For the associativity of matrix multiplication:

• (Ar )−1 = (A−1)r

• ArAs = Ar+s

• (Ar )s = Ars
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Definition (Transpose)

The transpose of an m × n matrix A is the n ×m matrix B defined by

bij = aji for i = 1, . . . , n and j = 1, . . . ,m

It is denoted AT

A = (aij) =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 AT = (aji ) =




a11 a21 · · · am1
a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · anm




[
1 0
3 1

] [
1 3
0 1

]
We reflect the matrix about its main diagonal

Note that if D is a diagonal matrix: DT = D
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• (AT )T = A

• (λA)T = λAT

• (A+ B)T = AT + BT

• (AB)T = BTAT (consider first which matrix sizes make sense in the multiplication, then
rewrite the terms)

• if A is invertible, (AT )−1 = (A−1)T

AT (A−1)T = (A−1A)T = IT = I using (AB)T = BTAT

(A−1)TAT = (AA−1)T = IT = I using (AB)T = BTAT
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Definition (Symmetric Matrix)

A matrix A is symmetric if it is equal to its transpose, A = AT .
(only square matrices can be symmetric)
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• An n × 1 matrix is a column vector, or simply a vector:

v =




v1
v2
...
vn




The numbers v1, v2, . . . are known as the components (or entries) of v .

• A row vector is a 1× n matrix

• We write vectors in lower boldcase type (writing by hand we can either underline them or add
an arrow over v).

• Addition and scalar multiplication are defined for vectors as for n × 1 matrices:

v + w =




v1 + w1
v2 + w2

...
vn + wn


 λv =




λv
λv
...
λv


 element-wise operations
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• For a fixed n, the set of vectors together with the operations of addition and multiplication
form the set Rn, usually called Euclidean space

• For vectors v1, v2, . . . , vk in Rn and scalars α1, α2, . . . , αk in R, the vector

v = α1v1 + α2v2 + · · ·+ αkvk

is known as linear combination of the vectors v1, v2, . . . , vk
• A zero vector is denoted by 0;

0 + v = v + 0 = v;
0v = 0

• The matrix product of v and w cannot be calculated

• The matrix product of vTw gives an 1× 1 matrix

• The matrix product of vwT gives an n × n matrix
26
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Definition (Inner product)

Given

v =




v1
v2
...
vn


 w =




w1
w2
...
wn




the inner product denoted 〈v,w〉, is the real number given by

〈v,w〉 =
〈



v1
v2
...
vn


,




w1
w2
...
wn




〉
= v1w1 + v2w2 + . . .+ vnwn = vTw

It is also called scalar product or dot product (and written v ·w).
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vTw =
[
v1 v2 · · · vn

]




w1
w2
...
wn


 = v1w1 + v2w2 + . . .+ vnwn

Theorem
The inner product

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn, x, y ∈ Rn

satisfies the following properties for all x, y, z ∈ Rn and for all α ∈ R:

• 〈x, y〉 = 〈y, x〉
• α 〈x, y〉 = 〈αx, y〉 = 〈x, αy〉
• 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉
• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

Note: vectors from different Euclidean spaces live in different ’worlds’
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Let A be an m × n matrix
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


and denote the columns of A by the column vectors a1, a2, . . . , an, so that

ai =


a1i

a2i
...

ami

 , i = 1, . . . , n.

Then if x = (x1, x2, . . . , xn)
T is any vector in Rn

Ax = x1a1 + x2a2 + . . .+ xnan

(ie, vector Ax in Rm is a linear combination of the column vectors of A)
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• We saw Matrix Algebra

• We can now prove two theorems on linear systems
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Theorem
A system of linear equations either has no solution, a unique solution or infinitely many solutions.

Proof.
Let’s assume the system Ax = b has two distinct solutions p and q, that is:

Ap = b Aq=b p− q 6= 0

Let t be any scalar and

v = p + t(q− p), t ∈ R

Then:

Av = A(p + t(q− p)) = Ap + t(Aq− Ap) = b + t(b− b) = b

that is, v is a solution of Ax = b and since p− q 6= 0 and there are infinitely many choices for t,
then there are infinitely many solutions for Ax = b.
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Theorem (Principle of Linearity)

Suppose that A is an m × n matrix, that b ∈ Rm and that the system Ax = b is consistent.
Suppose that p is any solution of Ax = b.
Then the set of all solutions of Ax = b consists precisely of the vectors p + z for z ∈ N(A); ie,

{x | Ax = b} = {p + z | z ∈ N(A)}.

Proof: We show that
1. p + z is a solution for any z in the null space of A ({p + z | z ∈ N(A)} ⊆ {x | Ax = b})
2. all solutions, x, of Ax = b are of the form p + z for some z ∈ N(A)

({x | Ax = b} ⊆ {p + z | z ∈ N(A)})
1. A(p + z) = Ap + Az = b + 0 = b so p + z ∈ {x | Ax = b}
2. Let x be a solution. Because p is also we have Ap = b andA(x− p) = Ax− Ap = b− b = 0 so
z = x− p is a solution of Az = 0 and x = p + z

(Check validity of the theorem on the last examples of previous lecture.)
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