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Cramer’s ruleRow Operations Revisited

Let’s examine the process of applying the elementary row operations:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


−→a 1−→a 2
...
−→a m


(−→a i row ith of matrix A)
Then the three operations can be described as:

−→a 1
λ−→a 2
...
−→a m



−→a 2−→a 1
...
−→a m




−→a 1−→a 2 + λ−→a 1
...
−→a m


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For any n × n matrices A and B:

AB =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

 =


−→a 1B−→a 2B
...
−→a nB




−→a 1B−→a 2B + λ−→a 1B
...
−→a nB

 =


−→a 1B

(−→a 2 + λ−→a 1)B
...
−→a nB

 =


−→a 1−→a 2 + λ−→a 1
...
−→a n

B

(matrix obtained by a row operation on AB) = (matrix obtained by a row operation on A)B

(matrix obtained by a row operation on B) = (matrix obtained by a row operation on I )B
5
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Definition (Elementary matrix)

An elementary matrix, E , is an n × n matrix obtained by doing exactly one row operation on the
n × n identity matrix, I .

Example:1 0 0
0 3 0
0 0 1

 0 1 0
1 0 0
0 0 1

 1 0 0
4 1 0
0 0 1


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B =

 1 2 4
1 3 6
−1 0 1

 ii−i−−→

 1 2 4
0 1 2
−1 0 1



I =

1 0 0
0 1 0
0 0 1

 ii−i−−→

 1 0 0
−1 1 0
0 0 1

 = E1

E1B =

 1 0 0
−1 1 0
0 0 1

 1 2 4
1 3 6
−1 0 1

 =

 1 2 4
0 1 2
−1 0 1


7
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The three elementary row operations are trivially invertible.

Theorem
Any elementary matrix is invertible, and the inverse is also an elementary matrix

E1B =

 1 0 0
−1 1 0
0 0 1

 1 2 4
1 3 6
−1 0 1

 =

 1 2 4
0 1 2
−1 0 1



E−1
1 (E1B) =

1 0 0
1 1 0
0 0 1

 1 2 4
0 1 2
−1 0 1

 =

 1 2 4
1 3 6
−1 0 1

 = B
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Definition (Row equivalence)

If two matrices A and B are m × n matrices, we say that A is row equivalent to B if and only if
there is a sequence of elementary row operations to transform A to B.

This equivalence relation satisfies three properties:

• reflexive: A ∼ A

• symmetric: A ∼ B =⇒ B ∼ A

• transitive: A ∼ B and B ∼ C =⇒ A ∼ C

Theorem
Every matrix is row equivalent to a matrix in reduced row echelon form
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Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A−1 exists

2. Ax = b has a unique solution for any b ∈ Rn

3. Ax = 0 only has the trivial solution, x = 0

4. The reduced row echelon form of A is I .

Proof: (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).
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• (1) =⇒ (2) [∃ A−1] =⇒ [∃!x : Ax = b,∀b ∈ Rn]

A−1Ax = A−1b =⇒ Ix = A−1b =⇒ x = A−1b

hence x = A−1b is the only possible solution and it is a solution indeed:
A(A−1b) = (AA−1)b = Ib = b, ∀b

• (2) =⇒ (3) [∃!x : Ax = b,∀b ∈ Rn] =⇒ [Ax = 0 =⇒ x = 0]
If Ax = b has a unique solution for all b ∈ Rn, then this is true for b = 0.
The unique solution of Ax = 0 must be the trivial solution, x = 0

12
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• (3) =⇒ (4) [Ax = 0 =⇒ x = 0] =⇒ [RREF of A is I ]
then in the reduced row echelon form of A there are no non-leading (free) variables and there
is a leading one in every column
hence also a leading one in every row (because A is square and in RREF)
hence it can only be the identity matrix

• (4) =⇒ (1) [RREF of A is I ] =⇒ [∃ A−1]
∃ sequence of row operations and elementary matrices E1, . . . ,Er that reduce A to I ie,

ErEr−1 · · ·E1A = I

Each elementary matrix has an inverse hence multiplying repeatedly on the left by E−1
r , E−1

r−1:

A = E−1
1 · · ·E−1

r−1E
−1
r I

hence, A is a product of invertible matrices hence invertible.
(Recall that (AB)−1 = B−1A−1)
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We saw that:

A = E−1
1 · · ·E−1

r−1E
−1
r I

taking the inverse of both sides:

A−1 = (E−1
1 · · ·E−1

r−1E
−1
r )−1 = Er · · ·E1 = Er · · ·E1I

Hence:

if ErEr−1E · · ·E1A = I then A−1 = ErEr−1 · · ·E1I

Method:

• Construct [A | I ]
• Use row operations to reduce this to [I | B]
• If this is not possible then the matrix is not invertible

• If it is possible then B = A−1
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A =

 1 2 4
1 3 6
−1 0 1

 → [A | I ] =

 1 2 4 1 0 0
1 3 6 0 1 0
−1 0 1 0 0 1

 ii−i
iii+i−−→

 1 2 4 1 0 0
0 1 2 −1 1 0
0 2 5 1 0 1


iii−2ii−−−→

 1 2 4 1 0 0
0 1 2 −1 1 0
0 0 1 3 −2 1

 i−4iii
ii−2iii−−−→

 1 2 0 −11 8 −4
0 1 0 −7 5 −2
0 0 1 3 −2 1


i−2ii−−−→

 1 0 0 3 −2 0
0 1 0 −7 5 −2
0 0 1 3 −2 1


A−1 =

 3 −2 0
−7 5 −2
3 −2 1


Verify by checking AA−1 = I and A−1A = I .
What would happen if the matrix is not invertible?
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Theorem
If A and B are n × n matrices and AB = I , then A and B are each invertible matrices, and
A = B−1 and B = A−1.

Proof: show that Bx = 0 has unique solution x = 0, then B is invertible.

Bx = 0 =⇒ A(Bx) = A0 =⇒ (AB)x = 0 AB=I
=⇒ Ix = 0 =⇒ x = 0

So B−1 exists. Hence:

AB = I =⇒ (AB)B−1 = IB−1 =⇒ A(BB−1) = B−1 =⇒ A = B−1

So A is the inverse of B, and therefore also invertible and

A−1 = (B−1)−1 = B

(Corollary: we do not need to verify both A−1A = I and AA−1 = I , one sufficies)
16
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• The determinant of a matrix A is a particular number associated with A, written |A| or det(A),
that tells whether the matrix A is invertible.

• For the 2× 2 case:

[A | I ] =

[
a b 1 0
c d 0 1

]
(1/a)R1−−−−−→

[
1 b/a 1/a 0
c d 0 1

]
R2−cR1−−−−−→

[
1 b/a 1/a 0
0 d − cb/a −c/a 1

]
aR2−−→

[
1 b/a 1/a 0
0 (ad − bc) −c a

]
Hence A−1 exists if and only if ad − bc 6= 0.

• hence, for a 2× 2 matrix the determinant is∣∣∣∣[a b
c d

]∣∣∣∣ = ∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

18



• The extension to n × n matrices is done recursively

Definition (Minor)

For an n × n matrix the (i , j) minor of A, denoted by Mij , is the determinant of the
(n − 1)× (n − 1) matrix obtained by removing the ith row and the jth column of A.

Definition (Cofactor)

The (i , j) cofactor of a matrix A is

Cij = (−1)i+jMij

Definition (Cofactor Expansion of |A| by row one)

The determinant of an n × n matrix is given by

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ = a11C11 + a12C12 + · · ·+ a1nC1n
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Example

A =

 1 2 3
4 1 1
−1 3 0

 |A| = 1C11 + 2C12 + 3C13

= 1
∣∣∣∣1 1
3 0

∣∣∣∣− 2
∣∣∣∣ 4 1
−1 0

∣∣∣∣+ 3
∣∣∣∣ 4 1
−1 3

∣∣∣∣
= 1(−3)− 2(1) + 3(13) = 34

Theorem
If A is an n × n matrix, then the determinant of A can be computed by multiplying the entries of
any row (or column) by their cofactors and summing the resulting products:

|A| =ai1Ci1 + ai2Ci2 + · · ·+ ainCin

(cofactor expansion by row i)
|A| =a1jC1j + a2jC2j + · · ·+ anjCnj

(cofactor expansion by column j)
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A mnemonic rule for the 3× 3 matrix determinant: the rule of Sarrus

|A| = + a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

Verify the rule:

• from the conditions of existence of an inverse
• as a consequence of the general recursive rule for the determinants
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2× 2 The area of the parallelogram is the absolute
value of the determinant of the matrix
formed by the vectors representing the
parallelogram’s sides.

3× 3 The volume of this parallelepiped is the
absolute value of the determinant of the
matrix formed by the rows constructed from
the vectors r1, r2, and r3.
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Let A be an n × n matrix, then it follows from the previous theorem:

1. |AT | = |A|

2. If a row of A consists entirely of zeros, then |A| = 0.

3. If A contains two rows which are equal, then |A| = 0.

|A| =
∣∣∣∣a b
a b

∣∣∣∣ = ab − ab = 0

|A| =

∣∣∣∣∣∣
a b c
d e f
a b c

∣∣∣∣∣∣ = −d
∣∣∣∣b c
b c

∣∣∣∣+ e

∣∣∣∣a c
a c

∣∣∣∣− f

∣∣∣∣a b
a b

∣∣∣∣ = 0+ 0+ 0

For 1. we can substitute row with column in 2., 3., 4.
23
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4. If the cofactors of one row are multiplied by the entries of a different row and added, then the
result is 0. That is, if i 6= j , then aj1Ci1 + aj2Ci2 + · · ·+ ajnCin = 0.

A =





...
...

. . .
...

ai1 ai2 · · · ain ith
...

...
. . .

...
aj1 aj2 · · · ajn
...

...
. . .

...

|A| = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

B =





...
...

. . .
...

aj1 aj2 · · · ajn ith
...

...
. . .

...
aj1 aj2 · · · ajn
...

...
. . .

...

|B| = aj1Ci1 + aj2Ci2 + · · ·+ ajnCin = 0
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5. If A = (aij) and if each entry of one of the rows, say row i , can be expressed as a sum of two
numbers, aij = bij + cij for i ≤ j ≤ n, then |A| = |B|+ |C |, where B is the matrix A with row i
replaced by bi1, bi2, · · · , bin and C is the matrix A with row i replaced by ci1, ci2, · · · , cin.

|A| =

∣∣∣∣∣∣
a b c

d + p e + q f + r
g h i

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣+
∣∣∣∣∣∣
a b c
p q r
g h i

∣∣∣∣∣∣ = |B|+ |C |
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Definition (Triangular Matrices)

An n × n matrix is said to be upper triangular if aij = 0 for i > j and lower triangular if aij = 0 for
i < j . Also A is said to be triangular if it is either upper triangular or lower triangular.

a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann



a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann


Definition (Diagonal Matrices)

An n × n matrix is diagonal if aij = 0 whenever i 6= j .


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann


26
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• Which row or column would you choose for the cofactor expansion in this case:

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

∣∣∣∣∣∣∣∣∣ =? = a11

∣∣∣∣∣∣∣
a22 · · · a2n
...

. . .
...

0 · · · ann

∣∣∣∣∣∣∣ = a11a22 · · · ann

• if A is upper/lower triangular or diagonal, then |A| = a11a22 · · · ann

• Idea: a square matrix in REF is upper triangular. What is the effect of row operations on the
determinant?
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RO1 multiply a row by a non-zero constant

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
αa21 αa22 · · · αa2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
|B| = αai1Ci1 + αai2Ci2 + · · ·+ αainCin = α|A|

 |A| changes to α|A|

RO2 interchange two rows

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad − cb |B| =
∣∣∣∣c d
a b

∣∣∣∣ = cb − ad =⇒ |B| = −|A|

|A| =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ |B| =

∣∣∣∣∣∣
g h i
d e f
a b c

∣∣∣∣∣∣ =⇒ |B| = −|A|

 |A| changes to −|A| (by induction)
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RO3 add a multiple of one row to another

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ , |B| =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 + 4a11 a22 + 4a12 · · · a2n + 4a1n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
|B| =(aj1 + λai1)Cj1 + (aj2 + λai2)Cj2 + · · ·+ (ajn + λain)Cjn

=aj1Cj1 + aj2Cj2 + · · ·+ ajnCjn + λ(ai1Cj1 + ai2Cj2 + · · ·+ ainCjn)

=|A|+ 0

 there is no change in |A|
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|A| =

∣∣∣∣∣∣∣∣
1 2 −1 4
−1 3 0 2
2 1 1 2
1 4 1 3

∣∣∣∣∣∣∣∣
RO3s
=

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 −3 3 −6
0 2 2 −1

∣∣∣∣∣∣∣∣
αR3= −3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 5 −1 6
0 1 −1 2
0 2 2 −1

∣∣∣∣∣∣∣∣

RO2
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 5 −1 6
0 2 2 −1

∣∣∣∣∣∣∣∣
RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 4 −5

∣∣∣∣∣∣∣∣
RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 4 −5

∣∣∣∣∣∣∣∣

RO3s
= 3

∣∣∣∣∣∣∣∣
1 2 −1 4
0 1 −1 2
0 0 4 −4
0 0 0 −1

∣∣∣∣∣∣∣∣ = 3(1× 1× 4× (−1)) = −12
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Theorem

If A and B are n × n matrices, then |AB| = |A||B|

Proof:
• Let E1 be an elementary matrix that multiplies a row by a non-zero constant k
• |E1| = |E1I | = k|I | = k and |E1B| = k |B| = |E1||B|
• similarly: |E2B| = −|B| = |E2||B| and |E3B| = |B| = |E3||B|
• by row equivalence we have

A = ErEr−1 · · ·E1R

where R is in RREF. Since A is square, R is either I or has a row of zeros.
• |A| = |ErEr−1 · · ·E1R| = |Er ||Er−1| · · · |E1||R| and |Ei | 6= 0
• If R = I :

|AB| = |(ErEr−1 · · ·E1I )B| = |ErEr−1 · · ·E1B|
= |Er ||Er−1| · · · |E1||B| = |ErEr−1 · · ·E1||B| = |A||B|

• If R 6= I then |AB| = |Er . . .E1RB| = |Er | . . . |E1||RB| and |AB| = 0
31
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Theorem

If A is an n × n matrix, then A is invertible if and only if |A| 6= 0.

Proof:

• (implied already by the first theorem of today: by (4) either R is I or it has a row of zeros.)

⇒ If A is invertible then |AA−1| = |A||A−1| = |I |. Hence |A| 6= 0. We get also that: and

|A−1| = 1
|A|

⇐ if |A| 6= 0 then A is invertible: we show this by construction:
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Definition (Adjoint)

If A is an n × n matrix, the matrix of cofactors of A is the matrix whose (i , j) entry is Cij , the (i , j)
cofactor of A.
The adjoint or (adjugate) of A is the transpose of the matrix of cofactors, ie:

adj(A) =


C11 C12 . . . C1n
C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn


T

=


C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn


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•
A adj(A) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn


• entry (1, 1) is a11C11 + a12C12 + · · ·+ a1nC1n, ie, cofactor by row 1
entry (1, 2) is a11C21 + a12C22 + · · ·+ a1nC2n, ie, entries of row 1 multiplied by cofactors of
row 2

A adj(A) =


|A| 0 . . . 0
0 |A| . . . 0
...

...
. . .

...
0 0 . . . |A|

 = |A|I

• Since |A| 6= 0 we can divide:

A

(
1
|A|

adj(A)
)

= I A−1 =
1
|A|

adj(A)
34
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Example

A =

 1 2 3
−1 2 1
4 1 1

 What is A−1?

• |A| = 1(2− 1)− 2(−1− 4) + 3(−1− 8) = −16 6= 0 =⇒ invertible

• Matrix of cofactors
+M11 −M12 +M13 −M14 · · ·
−M21 +M22 −M23 +M24 · · ·
+M31 −M32 +M33 −M34 · · ·

...
...

...
...

. . .

→
 1 5 −9

1 −11 7
−4 4 4


•

A−1 =
1
|A|

adj(A) = − 1
16

 1 5 −9
1 −11 7
−4 4 4

T

= − 1
16

 1 1 −4
5 −11 4
−9 7 4


35
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Example (cntd)

• Verify AA−1 = I :

− 1
16

 1 2 3
−1 2 1
4 1 1

 1 1 −4
5 −11 4
−9 7 4

 = − 1
16

−16 0 0
0 −16 0
0 0 −16

 = I
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1. Elementary Matrices

2. Matrix Inverse

3. Determinants

4. Cramer’s rule
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Theorem (Cramer’s rule)

If A is n × n, |A| 6= 0, and b ∈ Rn, then the solution x = [x1, x2, . . . , xn]
T of the linear system

Ax = b is given by

xi =
|Ai |
|A|

,

where Ai is the matrix obtained from A by replacing the ith column with the vector b.

Proof: Since |A| 6= 0, A−1 exists and we can solve for x by multiplying Ax = b on the left by A−1.
The x = A−1b:

x =


x1
x2
...
xn

 =
1
|A|


C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
. . .

...
C1n C2n . . . Cnn



b1
b2
...
bn


=⇒ xi =

1
|A| (b1C1i + b2C2i + · · ·+ bnCni ), ie, cofactor expansion of column i of A with column i

replaced by b, ie, |Ai | 38
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Example

Use Cramer’s rule to solve:
x + 2y + 3z = 7

− x + 2y + z = −3
4x + y + z = 5

• In matrix form: 1 2 3
−1 2 1
4 1 1

xy
z

 =

 7
−3
5


• |A| = −16 6= 0

•

x =

∣∣∣∣∣∣
7 2 3
−3 2 1
5 1 1

∣∣∣∣∣∣
|A|

= 1, y =

∣∣∣∣∣∣
1 7 3
−1 −3 1
4 5 1

∣∣∣∣∣∣
|A|

= −3, z =

∣∣∣∣∣∣
1 2 7
−1 2 −3
4 1 5

∣∣∣∣∣∣
|A|

= 4
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• There are three methods to solve Ax = b if A is n × n and |A| 6= 0:

1. Gaussian elimination

2. Matrix solution: find A−1, then calculate x = A−1b

3. Cramer’s rule

• There is one method to solve Ax = b if A is m × n and m 6= n or if |A| = 0:

1. Gaussian elimination

• There are two methods to find A−1:

1. by row reduction of [A | I ] to [I | A−1]

2. using cofactors for the adjoint matrix
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• If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

• Solving Ax = b in practice and at the computer:

– via LU factorization (much quicker if one has to solve several systems with the same matrix A
but different vectors b)

– if A is symmetric positive definite matrix then Cholesky decomposition (twice as fast)

– if A is large or sparse then iterative methods
41
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