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Vector Spaces and Subspaces
Linear independence
Bases and DimensionPremise

• We move to a higher level of abstraction

• A vector space is a set with an addition and scalar multiplication that behave appropriately,
that is, like Rn

• Imagine a vector space as a class of a generic type (template) in object oriented programming,
equipped with two operations.
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Definition (Vector Space)

A (real) vector space V is a non-empty set equipped with an addition and a scalar multiplication
operation such that for all α, β ∈ R and all u, v,w ∈ V :
1. u + v ∈ V (closure under addition)

2. u + v = v + u (commutative law for addition)

3. u + (v + w) = (u + v) + w (associative law for addition)

4. there is a single member 0 of V , called the zero vector, such that for all v ∈ V , v + 0 = v

5. for every v ∈ V there is an element w ∈ V , written −v, called the negative of v, such that
v + w = 0

6. αv ∈ V (closure under scalar multiplication)

7. α(u + v) = αu + αv (distributive law)

8. (α+ β)v = αv + βv (distributive law)

9. α(βv) = (αβ)v (associative law for vector multiplication)

10. 1v = v
8



Vector Spaces and Subspaces
Linear independence
Bases and DimensionExamples

• set Rn

• but the set of objects for which the vector space defined is valid are more than the vectors in
Rn.

• set of all functions F : R→ R.
We can define an addition f + g :

(f + g)(x) = f (x) + g(x)

and a scalar multiplication αf :

(αf )(x) = αf (x)

• Example: x + x2 and 2x . They can represent the result of the two operations.

• What is −f ? and the zero vector?
9
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The axioms given are minimum number needed.
Other properties can be derived:
For example:

(−1)x = −x

Proof:

0 = 0x = (1+ (−1))x = 1x + (−1)x = x + (−1)x

Adding −x on both sides:

− x = − x + 0 = −x + x + (−1)x = (−1)x

which proves that −x = (−1)x.

Try the same with −f .
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Linear independence
Bases and DimensionExamples

• V = {0}

• the set of all m × n matrices

• the set of all infinite sequences of real numbers, y = {y1, y2, . . . , yn, . . . , }, yi ∈ R.
(y = {yn}, n ≥ 1)

– addition of y = {y1, y2, . . . , yn, . . . , } and z = {z1, z2, . . . , zn, . . . , } then:
y + z = {y1 + z1, y2 + z2, . . . , yn + zn, . . . , }

– multiplication by a scalar α ∈ R:

αy = {αy1, αy2, . . . , αyn, . . . , }

• set of all vectors in R3 with the third entry equal to 0 (verify closure):

W =


xy
0

 ∣∣∣∣∣∣ x , y ∈ R


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Definition (Linear Combination)

For vectors v1, v2, . . . , vk in a vector space V , the vector

v = α1v1 + α2v2 + . . .+ αkvk

is called a linear combination of the vectors v1, v2, . . . , vk .
The scalars αi are called coefficients.

• To find the coefficients that given a set of vertices express by linear combination a given
vector, we solve a system of linear equations.

• If F is the vector space of functions from R to R then the function f : x 7→ 2x2 + 3x + 4 can
be expressed as a linear combination of:
g : x 7→ x2, h : x 7→ x , k : x 7→ 1 that is:

f = 2g + 3h + 4k

• Given two vectors v1 and v2, is it possible to represent any point in the Cartesian plane?
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Definition (Subspace)

A subspace W of a vector space V is a non-empty subset of V that is itself a vector space under
the same operations of addition and scalar multiplication as V .

Theorem
Let V be a vector space. Then a non-empty subset W of V is a subspace if and only if both the
following hold:
• for all u, v ∈W , u + v ∈W
(W is closed under addition)

• for all v ∈W and α ∈ R, αv ∈W
(W is closed under scalar multiplication)

ie, all other axioms can be derived to hold true
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Example

• The set of all vectors in R3 with the third entry equal to 0.

• The set {0} is not empty, it is a subspace since 0 + 0 = 0 and α0 = 0 for any α ∈ R.

Example

In R2, the lines y = 2x and y = 2x + 1 can be defined as the sets of vectors:

S =

{[
x
y

] ∣∣∣∣ y = 2x , x ∈ R
}

U =

{[
x
y

] ∣∣∣∣ y = 2x + 1, x ∈ R
}

S = {x | x = tv, t ∈ R} U = {x | x = p + tv, t ∈ R}

v =

[
1
2

]
, p =

[
0
1

]
14
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Example (cntd)

1. The set S is non-empty, since 0 = 0v ∈ S .
2. closure under addition:

u = s

[
1
2

]
∈ S , w = t

[
1
2

]
∈ S , for some s, t ∈ R

u + w = sv + tv = (s + t)v ∈ S since s + t ∈ R
3. closure under scalar multiplication:

u = s

[
1
2

]
∈ S for some s ∈ R, α ∈ R

αu = α(s(v)) = (αs)v ∈ S since αs ∈ R

Note that:

• u,w and α ∈ R must be arbitrary
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Example (cntd)

1. 0 6∈ U

2. U is not closed under addition:[
0
1

]
∈ U,

[
1
3

]
∈ U but

[
0
1

]
+

[
1
3

]
=

[
1
4

]
6∈ U

3. U is not closed under scalar multiplication[
0
1

]
∈ U, 2 ∈ R but 2

[
0
1

]
=

[
0
2

]
6∈ U

Note that:

• proving just one of the above couterexamples is enough to show that U is not a subspace

• it is sufficient to make them fail for particular choices

• a good place to start is checking whether 0 ∈ S . If not then S is not a subspace
16
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Theorem
A non-empty subset W of a vector space is a subspace if and only if for all u, v ∈W and all
α, β ∈ R, we have αu + βv ∈W .
That is, W is closed under linear combination.
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Geometric interpretation:

u

w

(0, 0)
x

y

u

w

(0, 0)
x

y

 The line y = 2x + 1 is an affine subset, a „translation“ of a subspace
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Theorem

For any m × n matrix A, N(A), ie, the solutions of Ax = 0, is a subspace of Rn

Proof

1. A0 = 0 =⇒ 0 ∈ N(A)

2. Suppose u, v ∈ N(A), then u + v ∈ N(A):

A(u + v) = Au + Av = 0 + 0 = 0

3. Suppose u ∈ N(A) and α ∈ R, then αu ∈ N(A):

A(αu) = A(αu) = αAu = α0 = 0

The set of solutions S to a general system Ax = b is not a subspace of Rn because 0 6∈ S
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Definition (Affine subset)

If W is a subspace of a vector space V and x ∈ V , then the set x +W defined by

x +W = {x + w | w ∈W }

is said to be an affine subset of V .

The set of solutions S to a general system Ax = b is an affine subspace, indeed recall that if x0 is
any solution of the system

S = {x0 + z | z ∈ N(A)}
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Bases and DimensionRange of a Matrix is a Subspace

Theorem

For any m × n matrix A, R(A) = {Ax | x ∈ Rn} is a subspace of Rm

Proof

1. A0 = 0 =⇒ 0 ∈ R(A)

2. Suppose u, v ∈ R(A), then u + v ∈ R(A):
...

3. Suppose u ∈ R(A) and α ∈ R, then αu ∈ R(A):
...
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• If v = α1v1 + α2v2 + . . .+ αkvk and w = β1v1 + β2v2 + . . .+ βkvk ,
then v + w and sv, s ∈ R are also linear combinations of the vectors v1, v2, . . . , vk .

• The set of all linear combinations of a given set of vectors of a vector space V forms a
subspace:

Definition (Linear span)

Let V be a vector space and v1, v2, . . . , vk ∈ V . The linear span of X = {v1, v2, . . . , vk} is the set
of all linear combinations of the vectors v1, v2, . . . , vk , denoted by Lin(X ), that is:

Lin({v1, v2, . . . , vk}) = {α1v1 + α2v2 + . . .+ αkvk | α1, α2, . . . , αk ∈ R}

Theorem

If X = {v1, v2, . . . , vk} is a set of vectors of a vector space V , then Lin(X ) is a subspace of V and
is also called the subspace spanned by X .
It is the smallest subspace containing the vectors v1, v2, . . . , vk .
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Example

• Lin({v}) = {αv | α ∈ R} defines a line in Rn.

• Recall that a plane in R3 has two equivalent representations:

ax + by + cz = d and x = p + sv + tw, s, t ∈ R

where v and w are non parallel.

– If d = 0 and p = 0, then

{x | x = sv + tw, s, t,∈ R} = Lin({v,w})

and hence a subspace of Rn.

– If d 6= 0, then the plane is not a subspace. It is an affine subset, a translation of a subspace.

(recall that one can also show directly that a subset is a subspace or not)
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Definition (Column space)

If A is an m × n matrix, and if a1, a2, . . . , ak denote the columns of A, then the column space or
range of A is

CS(A) = R(A) = Lin({a1, a2, . . . , ak})

and is a subspace of Rm.

Definition (Row space)

If A is an m × n matrix, and if −→a 1,
−→a 2, . . . ,

−→a k denote the rows of A, then the row space of A is

RS(A) = Lin({−→a 1,
−→a 2, . . . ,

−→a k})

and is a subspace of Rn.

• If A is an m × n matrix, then for any r ∈ RS(A) and any x ∈ N(A), 〈r, x〉 = 0; that is, r and x
are orthogonal, RS(A) ⊥ N(A). (hint: look at Ax = 0)
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We have seen:

• Definition of vector space and subspace

• Linear combinations as the main way to work with vector spaces

• Proofs that a given set is a vector space

• Proofs that a given subset of a vector space is a subspace or not

• Definition of linear span of set of vectors

• Definition of row and column spaces of a matrix
CS(A) = R(A) and RS(A) ⊥ N(A)
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Definition (Linear Independence)

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk are linearly independent (or
form a linearly independent set) if and only if the vector equation

α1v1 + α2v2 + · · ·+ αkvk = 0

has the unique solution

α1 = α2 = · · · = αk = 0

Definition (Linear Dependence)

Let V be a vector space and v1, v2, . . . , vk ∈ V . Then v1, v2, . . . , vk are linearly dependent (or
form a linearly dependent set) if and only if there are real numbers α1, α2, · · · , αk , not all zero,
such that

α1v1 + α2v2 + · · ·+ αkvk = 0
27
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Example

In R2, the vectors

v =

[
1
2

]
and w =

[
1
−1

]
are linearly independent. Indeed:

α

[
1
2

]
+ β

[
1
−1

]
=

[
0
0

]
=⇒

{
α + β = 0
2α − β = 0

The homogeneous linear system has only the trivial solution, α = 0, β = 0,
so linear independence.
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Example

In R3, the following vectors are linearly dependent:

v1 =

12
3

 , v2 =

21
5

 , v3 =

 4
5
11


Indeed: 2v1 + v2 + v3 = 0
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Theorem

The set {v1, v2, . . . , vk} ⊆ V is linearly dependent if and only if at least one vector vi is a linear
combination of the other vectors.

Proof
=⇒
If {v1, v2, . . . , vk} are linearly dependent then

α1v1 + α2v2 + · · ·+ αkvk = 0

has a solution with some αi 6= 0, then:

vi = −
α1

αi
v1 −

α2

αi
v2 − · · · −

αi−1

αi
vi−1 −

αi+1

αi
vi+1 + · · · −

αk

αi
vk

which is a linear combination of the other vectors
⇐=
If vi is a lin combination of the other vectors, eg,

vi = β1v1 + · · ·+ βi−1vi−1 + βi+1vi+1 + · · ·+ βkvk
then

β1v1 + · · ·+ βi−1vi−1 − vi + βi+1vi+1 + · · ·+ βkvk = 0



Vector Spaces and Subspaces
Linear independence
Bases and Dimension

Corollary

Two vectors are linearly dependent if and only if at least one vector is a scalar multiple of the other.

Example

v1 =

12
3

 , v2 =

21
5


are linearly independent
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Theorem
In a vector space V , a non-empty set of vectors that contains the zero vector is linearly dependent.

Proof:

{v1, v2, . . . , vk} ⊂ V

{v1, v2, . . . , vk , 0}

0v1 + 0v2 + . . .+ 0vk + a0 = 0, a 6= 0
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Theorem
If v1, v2, . . . , vk are linearly independent vectors in V and if

a1v1 + a2v2 + . . .+ akvk = b1v1 + b2v2 + . . .+ bkvk

then

a1 = b1, a2 = b2, . . . ak = bk .

• If a vector x can be expressed as a linear combination of linearly independent vectors, then this
can be done in only one way

x = c1v1 + c2v2 + . . .+ ckvk
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For k vectors v1, v2, . . . , vk ∈ Rn

α1v1 + α2v2 + · · ·+ αkvk

is equivalent to

Ax

where A is the n× k matrix whose columns are the vectors v1, v2, . . . , vk and x = [α1, α2, . . . , αk ]
T :

Theorem
The vectors v1, v2, . . . , vk in Rn are linearly dependent if and only if the linear system Ax = 0,
where A is the matrix A = [v1 v2 · · · vk ], has a solution other than x = 0.
Equivalently, the vectors are linearly independent precisely when the only solution to the system is
x = 0.

If vectors are linearly dependent, then any solution x 6= 0, x = [α1, α2. . . . , αk ]
T of Ax = 0 gives a

non-trivial linear combination Ax = α1v1 + α2v2 + . . .+ αkvk = 0
35
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Example

v1 =

[
1
2

]
, v2 =

[
1
−1

]
, v3 =

[
2
−5

]
are linearly dependent.
We solve Ax = 0

A =

[
1 1 2
2 −1 −5

]
→ · · · →

[
1 0 −1
0 1 3

]
The general solution is

v =

 t
−3t
t


and Ax = tv1 − 3tv2 + tv3 = 0

Hence, for t = 1 we have: 1
[
1
2

]
− 3

[
1
−1

]
+

[
2
−5

]
=

[
0
0

]
36



Recall that Ax = 0 has precisely one solution x = 0 iff the n × k matrix is row equiv. to a row
echelon matrix with k leading ones, ie, iff rank(A) = k

Theorem

Let v1, v2, . . . , vk ∈ Rn. The set {v1, v2, . . . , vk} is linearly independent iff the n × k matrix
A = [v1 v2 . . . vk ] has rank k .

Theorem
The maximum size of a linearly independent set of vectors in Rn is n.

• rank(A) ≤ min{n, k}, hence rank(A) ≤ n⇒ when lin. indep. k ≤ n.
• we exhibit an example that has exactly n independent vectors in Rn (there are infinite
examples):

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1


This is known as the standard basis of Rn.
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Example

L1 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1

 ,

0
0
1
0

 ,

2
5
9
1


 lin. dep. since 5 > n = 4

L2 =




1
0
−1
0

 ,

1
2
9
2


 lin. indep.

L3 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1


 lin. dep. since rank(A) = 2

L4 =




1
0
−1
0

 ,

1
2
9
2

 ,

2
1
3
1

 ,

0
0
1
0


 lin. dep. since L3 ⊆ L4
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Let S = {v1, v2, . . . , vk} be a set of vectors in Rn.
What are the conditions for S to span Rn and be linearly independent?

Let A be the n × k matrix whose columns are the vectors from S .
• S spans Rn if for any v ∈ Rn the linear system Ax = v is consistent for all v ∈ Rn. This
happens when rank(A) = n, hence k ≥ n

• S is linearly independent iff the linear system Ax = 0 has a unique solution. This happens
when rank(A) = k , Hence k ≤ n

Hence, to span Rn and to be linearly independent, the set S must have exactly n vectors and the
square matrix A must have det(A) 6= 0

Example

v1 =

12
3

 , v2 =

21
5

 , v3 =

45
1

 |A| =

∣∣∣∣∣∣
1 2 4
2 1 5
3 5 1

∣∣∣∣∣∣ = 30 6= 0
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Definition (Basis)

Let V be a vector space. Then the subset B = {v1, v2, . . . , vn} of V is said to be a basis for V if:
1. B is a linearly independent set of vectors, and
2. B spans V ; that is, V = Lin(B)

Theorem
If V is a vector space, then a smallest spanning set is a basis of V .

Theorem

B = {v1, v2, . . . , vn} is a basis of V if and only if any v ∈ V is a unique linear combination of
v1, v2, . . . , vn

42



Example

{e1, e2, . . . , en} is the standard basis of Rn.
the vectors are linearly independent and for any x = [x1, x2, . . . , xn]

T ∈ Rn,
x = x1e1 + x2e2 + . . .+ xnen, ie,

x = x1


1
0
...
0

+ x2


0
1
...
0

+ . . .+ xn


0
0
...
1


Example

The set below is a basis of R2:

S =

{[
1
2

]
,

[
1
−1

]}
• any vector b ∈ R2 is a linear combination of the two vectors in S
 Ax = b is consistent for any b.

• S spans R2 and is linearly independent
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Example

Find a basis of the subspace of R3 given by

W =


xy
z

 ∣∣∣∣∣∣ x + y − 3z = 0

 .

x =

xy
z

 =

 x
−x + 3z

z

 = x

 1
−1
0

+ z

03
1

 = xv + zw, ∀x , z ∈ R

The set {v,w} spans W . The set is also independent:

αv + βw = 0 =⇒ α = 0, β = 0

44



Vector Spaces and Subspaces
Linear independence
Bases and DimensionCoordinates

Definition (Coordinates)

If S = {v1, v2, . . . , vn} is a basis of a vector space V , then any vector v ∈ V can be expressed
uniquely as v = α1v1 + α2v2 + . . .+ αnvn then the real numbers α1, α2, . . . , αn are the coordinates
of v with respect to the basis S .
We use the notation

[v]S =


α1
α2
...
αn


S

to denote the coordinate vector of v in the basis S .

• We assume the order of the vectors in the basis to be fixed: aka, ordered basis
• Note that [v]S is a vector in Rn: Coordinate mapping creates a one-to-one correspondence
between a general vector space V and the fmailiar vector space Rn.
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Example

Consider the two basis of R2:

B =

{[
1
0

]
,

[
0
1

]}

[v]B =

[
2
−5

]
B

S =

{[
1
2

]
,

[
1
−1

]}

[v]S =

[
−1
3

]
S

In the standard basis the coordinates of v are precisely the components of the vector v.
In the basis S , they are such that

v = −1
[
1
2

]
+ 3

[
1
−1

]
=

[
2
−5

]
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Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

6. The rank of A is n

7. The column vectors of A are a basis of Rn

8. The rows of A (written as vectors) are a basis of Rn

(The last statement derives from |AT | = |A|.)
Hence, simply calculating the determinant can inform on all the above facts.
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Example

v1 =

12
3

 , v2 =

21
5

 , v3 =

 4
5
11


This set is linearly dependent since v3 = 2v1 + v2
so v3 ∈ Lin({v1, v2}) and Lin({v1, v2}) = Lin({v1, v2, v3}).
The linear span of {v1, v2} in R3 is a plane:

x =

xy
z

 = sv1 + tv2 = s

12
3

+ t

21
5


The vector x belongs to the subspace iff it can be expressed as a linear combination of v1, v2, that
is, if v1, v2, x are linearly dependent or:

|A| =

∣∣∣∣∣∣
1 2 x
2 1 y
3 5 z

∣∣∣∣∣∣ = 0 =⇒ |A| = 7x + y − 3z = 0
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Theorem
Let V be a vector space with a basis

B = {v1, v2, . . . , vn}

of n vectors. Then any set of n + 1 vectors is linearly dependent.

Proof:
Omitted (choose an arbitrary set of n + 1 vectors in V and show that since any of them is spanned
by the basis then the set must be linearly dependent.)

• Let S = {w1,w2, . . . ,wn+1} be any set of n + 1 vectors in V .
• Since B is a basis, then

wi = a1iv1 + a2iv2 + . . .+ anivn

• linear combination of vectors in S :

b1w1 + b2w2 + · · ·+ bn+1wn+1 = 0

Substituting:

b1(a11v1 + a21v2 + . . .+ an1vn) + b2(a12v1 + a22v2 + . . .+ an2vn) + · · ·
+ bn+1(a1,n+1v1 + a2,n+1v2 + . . . + an,n+1vn) = 0
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It follows that:

Theorem
Let a vector space V have a finite basis consisting of r vectors. Then any basis of V consists of
exactly r vectors.

Definition (Dimension)

The number of k vectors in a finite basis of a vector space V is the dimension of V and is
denoted by dim(V ).
The vector space V = {0} is defined to have dimension 0.

• a plane in R2 is a two-dimensional subspace

• a line in Rn is a one-dimensional subspace

• a hyperplane in Rn is an (n − 1)-dimensional subspace of Rn

• the vector space F of real functions is an infinite-dimensional vector space

• the vector space of real-valued sequences is an infinite-dimensional vector space.
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Example

The plane W in R3

W = {x | x + y − 3z = 0}

has a basis consisting of the vectors v1 = [1, 2, 1]T and v2 = [3, 0, 1]T .

Let v3 be any vector 6∈W , eg, v3 = [1, 0, 0]T . Then the set S = {v1, v2, v3} is a basis of R3.
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If we are given k vectors v1, v2, . . . , vk in Rn, how can we find a basis for Lin({v1, v2, . . . , vk})?

We can:

• create an n × k matrix (vectors as columns) and find a basis for the column space by putting
the matrix in reduced row echelon form
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Definition (Rank and nullity)
The rank of a matrix A is

rank(A) = dim(R(A))

The nullity of a matrix A is

nullity(A) = dim(N(A))

Although subspaces of possibly different Euclidean spaces:

Theorem
If A is an m × n matrix, then

dim(RS(A)) = dim(CS(A)) = rank(A)

Theorem (Rank-nullity theorem)

For an m × n matrix A

rank(A) + nullity(A) = n (dim(R(A)) + dim(N(A)) = n)
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• Linear dependence and independence

• Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal
zero

• Basis

• Find a basis for a linear space

• Dimension (finite, infinite)
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