DM559
 Linear and Integer Programming

Lecture 8

Change of Basis

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Coordinate Change

- Linear dependence and independence
- Determine linear dependency of a set of vectors, ie, find non-trivial lin. combination that equal zero
- Basis
- Find a basis for a linear space
- Dimension (finite, infinite)

Outline

Coordinate Change

1. Coordinate Change

Coordinates

Recall:
Definition (Coordinates)
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of a vector space V, then

- any vector $\mathbf{v} \in V$ can be expressed uniquely as $\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}$
- and the real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the coordinates of \mathbf{v} wrt the basis S.

To denote the coordinate vector of v in the basis S we use the notation

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{S}
$$

- In the standard basis the coordinates of \mathbf{v} are precisely the components of the vector \mathbf{v} : $\mathbf{v}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+\cdots+v_{n} \mathbf{e}_{n}$
- How to find coordinates of a vector v wrt another basis?

Transition from Standard to Basis B

Definition (Transition Matrix)
Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of \mathbb{R}^{n}. The coordinates of a vector x wrt B, $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{\top}=[\mathbf{x}]_{B}$, are found by solving the linear system:

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\ldots+a_{n} \mathbf{v}_{n}=\mathbf{x} \quad \text { that is } \quad\left[\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right][\mathbf{x}]_{B}=\mathbf{x}
$$

We call P the matrix whose columns are the basis vectors:

$$
P=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

Then for any vector $\mathrm{x} \in \mathbb{R}^{n}$

$$
\mathbf{x}=P[\mathbf{x}]_{B}
$$

transition matrix from B coords to standard coords
moreover P is invertible (columns are a basis):

$$
[\mathrm{x}]_{B}=P^{-1} \mathbf{x}
$$

transition matrix from standard coords to B coords

Example

$$
\begin{aligned}
& B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\} \quad[\mathbf{v}]_{B}=\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right] \\
& P=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]
\end{aligned}
$$

$\operatorname{det}(P)=4 \neq 0$ so B is a basis of \mathbb{R}^{3}
We derive the standard coordinates of \mathbf{v} :

$$
\begin{aligned}
& \mathbf{v}=4\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]-5\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
-9 \\
-3 \\
-5
\end{array}\right] \\
& \mathbf{v}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 2 \\
-1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
-5
\end{array}\right]_{B}=\left[\begin{array}{l}
-9 \\
-3 \\
-5
\end{array}\right]
\end{aligned}
$$

Example (cntd)

$$
B=\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right\}, \quad[\mathbf{x}]_{S}=\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]
$$

We derive the B coordinates of vector \mathbf{x} :

$$
\left[\begin{array}{c}
5 \\
7 \\
-3
\end{array}\right]=a_{1}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]+a_{2}\left[\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

either we solve $P \mathbf{a}=\mathrm{x}$ in a by Gaussian elimination or we find the inverse P^{-1} :

$$
[\mathbf{x}]_{B}=P^{-1} \mathbf{x}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]_{B} \quad \text { check the calculation }
$$

What are the B coordinates of the basis vector? $([1,0,0],[0,1,0],[0,0,1])$

Change of Basis

Since $T(\mathbf{x})=P \mathbf{x}$ then $T\left(\mathbf{e}_{i}\right)=\mathbf{v}_{i}$, ie, T maps standard basis vector to new basis vectors

Example

Rotate basis in \mathbb{R}^{2} by $\pi / 4$ anticlockwise, find coordinates of a vector wrt the new basis.

$$
A_{T}=\left[\begin{array}{cc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Since the matrix A_{T} rotates $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, then $A_{T}=P$ and its columns tell us the coordinates of the new basis and $\mathbf{v}=P[\mathbf{v}]_{B}$ and $[\mathbf{v}]_{B}=P^{-1} \mathbf{v}$. The inverse is a rotation clockwise:

$$
P^{-1}=\left[\begin{array}{cc}
\cos \left(-\frac{\pi}{4}\right) & -\sin \left(-\frac{\pi}{4}\right) \\
\sin \left(-\frac{\pi}{4}\right) & \cos \left(-\frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\frac{\pi}{4}\right) & \sin \left(\frac{\pi}{4}\right) \\
-\sin \left(\frac{\pi}{4}\right) & \cos \left(\frac{\pi}{4}\right)
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Example (cntd)
Find the new coordinates of a vector $\mathbf{x}=[1,1]^{T}$

$$
[\mathbf{x}]_{B}=P^{-1} \mathbf{x}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
0
\end{array}\right]
$$

Change of basis from B to B^{\prime}

Given an old basis B of \mathbb{R}^{n} with transition matrix P_{B}, and a new basis B^{\prime} with transition matrix $P_{B^{\prime}}$, how do we change from coords in the basis B to coords in the basis B^{\prime} ?
coordinates in $B \xrightarrow{v=P_{B}[v]_{B}}$ standard coordinates $\xrightarrow{\left[v_{B^{\prime}}=P_{B^{\prime}}^{-1} v\right.}$ coordinates in B^{\prime}

$$
\begin{aligned}
& {[\mathbf{v}]_{B^{\prime}}=P_{B^{\prime}}^{-1} P_{B}[\mathbf{v}]_{B}} \\
& M=P_{B^{\prime}}^{-1} P_{B}=P_{B^{\prime}}^{-1}\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lllll}
P_{B^{\prime}}^{-1} \mathbf{v}_{1} & P_{B^{\prime}}^{-1} \mathbf{v}_{2} & \ldots & P_{B^{\prime}}^{-1} \mathbf{v}_{n}
\end{array}\right]
\end{aligned}
$$

i.e., the columns of the transition matrix M from the old basis B to the new basis B^{\prime} are the coordinate vectors of the old basis B with respect to the new basis B^{\prime}

Change of basis from B to B^{\prime}

Theorem
If B and B^{\prime} are two bases of \mathbb{R}^{n}, with

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}
$$

then the transition matrix from B coordinates to B^{\prime} coordinates is given by

$$
\left.M=\left[\begin{array}{llll}
{\left[\mathbf{v}_{1}\right.}
\end{array}\right]_{B^{\prime}} \quad\left[\begin{array}{lll}
\mathbf{v}_{2}
\end{array}\right]_{B^{\prime}} \quad \cdots,\left[\begin{array}{l}
\mathbf{v}_{n}
\end{array}\right]_{B^{\prime}}\right]
$$

(i.e., the columns of the transition matrix M from the old basis B to the new basis B^{\prime} are the coordinate vectors of the old basis B with respect to the new basis B^{\prime})

Example

$$
B=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \quad B^{\prime}=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{l}
5 \\
2
\end{array}\right]\right\}
$$

are basis of \mathbb{R}^{2}, indeed the corresponding transition matrices from standard basis:

$$
P=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right] \quad Q=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]
$$

have $\operatorname{det}(P)=3, \operatorname{det}(Q)=1$. Hence, lin. indep. vectors.
We are given

$$
[\mathbf{x}]_{B}=\left[\begin{array}{c}
4 \\
-1
\end{array}\right]_{B}
$$

find its coordinates in B^{\prime}.

Example (cntd)

1. find first the standard coordinates of x

$$
\mathbf{x}=4\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

and then find B^{\prime} coordinates:

$$
[\mathbf{x}]_{B^{\prime}}=Q^{-1} \mathbf{x}=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
-25 \\
16
\end{array}\right]_{B^{\prime}}
$$

2. use transition matrix M from B to B^{\prime} coordinates:

$$
\begin{gathered}
\mathbf{v}=P[\mathbf{v}]_{B} \quad \text { and } \quad \mathbf{v}=Q[\mathbf{v}]_{B^{\prime}} \quad \rightsquigarrow \quad[\mathbf{v}]_{B^{\prime}}=Q^{-1} P[\mathbf{v}]_{B}: \\
M=Q^{-1} P=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-8 & -7 \\
5 & 4
\end{array}\right] \\
{[\mathbf{x}]_{B^{\prime}}=\left[\begin{array}{cc}
-8 & -7 \\
5 & 4
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-25 \\
16
\end{array}\right]_{B^{\prime}}}
\end{gathered}
$$

