DM559
 Linear and Integer Programming

 Lecture 9

 Lecture 9
 Linear Transformations

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Linear Transformations

- vector spaces and subspaces
- range and null space, and rank
- linear independency
- bases and dimensions
- change of basis from standard to arbitrary basis
- change of basis between two arbitrary bases

Outline

Linear Transformations

1. Linear Transformations

Linear Transformations

Definition (Linear Transformation)
Let V and W be two vector spaces. A function $T: V \rightarrow W$ is linear if for all $\mathbf{u}, \mathbf{v} \in V$ and all $\alpha \in \mathbb{R}$:

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
2. $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$

A linear transformation is a linear function between two vector spaces

- If $V=W$ also known as linear operator
- Equivalent condition: $T(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v})$
- for all $\mathbf{0} \in V, T(\mathbf{0})=\mathbf{0}$

Example (Linear Transformations)

- vector space $V=\mathbb{R}, F_{1}(x)=p x$ for any $p \in \mathbb{R}$

$$
\begin{aligned}
\forall x, y \in \mathbb{R}, \alpha, \beta \in \mathbb{R}: F_{1}(\alpha x+\beta y) & =p(\alpha x+\beta y)=\alpha(p x)+\beta(p y) \\
& =\alpha F_{1}(x)+\beta F_{1}(y)
\end{aligned}
$$

- vector space $V=\mathbb{R}, F_{2}(x)=p x+q$ for any $p, q \in \mathbb{R}$ or $F_{3}(x)=x^{2}$ are not linear transformations

$$
T(x+y) \neq T(x)+T(y) \quad \text { for some } x, y \in \mathbb{R}
$$

- vector spaces $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}, m \times n$ matrix $A, \quad T(\mathbf{x})=A \mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=T(\mathbf{u})+T(\mathbf{v}) \\
& T(\alpha \mathbf{u})=A(\alpha \mathbf{u})=\alpha A \mathbf{u}=\alpha T(\mathbf{u})
\end{aligned}
$$

Example (Linear Transformations)

- vector spaces $V=\mathbb{R}^{n}, W: f: \mathbb{R} \rightarrow \mathbb{R} . \quad T: \mathbb{R}^{n} \rightarrow W$:

$$
\begin{aligned}
& T(\mathbf{u})=T\left(\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]\right)=p_{u_{\mathbf{1}}, u_{2}, \ldots, u_{n}}=p_{\mathbf{u}} \\
& p_{u_{\mathbf{1}}, u_{\mathbf{2}}, \ldots, u_{n}}=u_{1} x^{1}+u_{2} x^{2}+u_{3} x^{3}+\cdots+u_{n} x^{n} \\
& p_{\mathbf{u}+\mathbf{v}}(x)=\cdots=\left(p_{\mathbf{u}}+p_{\mathbf{v}}\right)(x) \\
& p_{\alpha \mathbf{u}}(\mathbf{x})=\cdots=\alpha p_{u}(x)
\end{aligned}
$$

Linear Transformations and Matrices

- any $m \times n$ matrix A defines a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \rightsquigarrow T_{A}$
- for every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ there is a matrix A such that $T(\mathbf{v})=A \mathbf{v} \rightsquigarrow A_{T}$

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ denote the standard basis of \mathbb{R}^{n} and let A be the matrix whose columns are the vectors $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)$: that is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \ldots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

Then, for every $\mathbf{x} \in \mathbb{R}^{n}, T(\mathbf{x})=A \mathbf{x}$.
Proof: write any vector $x \in \mathbb{R}^{n}$ as lin. comb. of standard basis and then make the image of it.

Example
$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+y+z \\
x-y \\
x+2 y-3 z
\end{array}\right]
$$

- The image of $\mathbf{u}=[1,2,3]^{T}$ can be found by substitution: $T(\mathbf{u})=[6,-1,-4]^{T}$.
- to find A_{T} :

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right] \\
& A=\left[T\left(\mathbf{e}_{1}\right) T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{n}\right)\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 2 & -3
\end{array}\right]
\end{aligned}
$$

$$
T(\mathbf{u})=A \mathbf{u}=[6,-1,-4]^{T} .
$$

Linear Transformation in \mathbb{R}^{2}

- We can visualize them!
- Reflection in the x axis:

$$
T:\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
-y
\end{array}\right] \quad A_{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- Stretching the plane away from the origin

$$
T(\mathbf{x})=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Rotation anticlockwise by an angle θ

we search the images of the standard basis vector $\mathbf{e}_{1}, \mathbf{e}_{2}$

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
a \\
c
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

they will be orthogonal and with length 1.

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

For $\pi / 4$:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Identity and Zero Linear Transformations

- For $T: V \rightarrow V$ the linear transformation such that $T(\mathbf{v})=\mathbf{v}$ is called the identity.
- if $V=\mathbb{R}^{n}$, the matrix $A_{T}=I($ of size $n \times n)$
- For $T: V \rightarrow W$ the linear transformation such that $T(\mathbf{v})=\mathbf{0}$ is called the zero transformation.
- If $V=\mathbb{R}^{n}$ and $W=\mathbb{R}^{m}$, the matrix A_{T} is an $m \times n$ matrix of zeros.

Composition of Linear Transformations

- Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear transformations.

The composition of $S T$ is again a linear transformation given by:

$$
S T(\mathbf{v})=S(T(\mathbf{v}))=S(\mathbf{w})=\mathbf{u}
$$

where $\mathbf{w}=T(\mathbf{v})$

- $S T$ means do T and then do $S: V \xrightarrow{T} W \xrightarrow{S} U$
- if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ in terms of matrices:

$$
S T(\mathbf{v})=S(T(\mathbf{v}))=S\left(A_{T} \mathbf{v}\right)=A_{S} A_{T} \mathbf{v}
$$

note that composition is not commutative

Combinations of Linear Transformations

- If $S, T: V \rightarrow W$ are linear transformations between the same vector spaces, then $S+T$ and $\alpha S, \alpha \in \mathbb{R}$ are linear transformations.
- hence also $\alpha S+\beta T, \alpha, \beta \in \mathbb{R}$ is

Inverse Linear Transformations

- If V and W are finite-dimensional vector spaces of the same dimension, then the inverse of a lin. transf. $T: V \rightarrow W$ is the lin. transf such that

$$
T^{-1}(T(v))=\mathbf{v}
$$

- In \mathbb{R}^{n} if T^{-1} exists, then its matrix satisfies:

$$
T^{-1}(T(v))=A_{T-1} A_{T} \mathbf{v}=/ \mathbf{v}
$$

that is, T^{-1} exists iff $\left(A_{T}\right)^{-1}$ exists and $A_{T-1}=\left(A_{T}\right)^{-1}$ (recall that if $B A=I$ then $B=A^{-1}$)

- $\ln \mathbb{R}^{2}$ for rotations:

$$
A_{T-1}=\left[\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Example

Is there an inverse to $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$?

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x+y+z \\
x-y \\
x+2 y-3 z
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 2 & -3
\end{array}\right]
\end{aligned}
$$

Since $\operatorname{det}(A)=9$ then the matrix is invertible, and T^{-1} is given by the matrix:

$$
A^{-1}=\frac{1}{9}\left[\begin{array}{ccc}
3 & 5 & 1 \\
3 & -4 & 1 \\
3 & -1 & -2
\end{array}\right] \quad T^{-1}\left(\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{1}{3} u+\frac{5}{9} v+\frac{1}{9} w \\
\frac{1}{3} u-\frac{4}{9} v+\frac{1}{9} w \\
\frac{1}{3} u+\frac{1}{9} v-\frac{2}{9} w
\end{array}\right]
$$

Change of Basis for a Linear Transformation

We saw how to find A for a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ using standard basis in both \mathbb{R}^{n} and \mathbb{R}^{m}. Now: is there a matrix that represents T wrt two arbitrary bases B and B^{\prime} ?

Theorem
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{m}^{\prime}\right\}$ be bases of \mathbb{R}^{n} and \mathbb{R}^{m}.
Then for all $\mathbf{x} \in \mathbb{R}^{n}$,

$$
[T(\mathbf{x})]_{B^{\prime}}=M[\mathbf{x}]_{B}
$$

where $M=A_{\left[B, B^{\prime}\right]}$ is the $m \times n$ matrix with the ith column equal to $\left[T\left(\mathbf{v}_{i}\right)\right]_{B^{\prime}}$, the coordinate vector of $T\left(\mathbf{v}_{i}\right)$ wrt the basis B^{\prime}.

Proof:

change from B to standard $\quad \mathbf{x}=P_{B}^{n \times n}[\mathbf{x}]_{B} \quad \forall \mathbf{x} \in \mathbb{R}^{n}$
perform linear transformation $T(\mathbf{x})=A \mathbf{x}=A P_{B}^{n \times n}[\mathbf{x}]_{B}$
in standard coordinates \downarrow
change to basis $B^{\prime} \quad[\mathbf{u}]_{B^{\prime}}=\left(P_{B^{\prime}}^{m \times m}\right)^{-1} \mathbf{u} \quad \forall \mathbf{u} \in \mathbb{R}^{m}$

$$
\begin{aligned}
& {[T(\mathbf{x})]_{B^{\prime}}=\left(P_{B^{\prime}}^{m \times m}\right)^{-1} A P_{B}^{n \times n}[\mathbf{x}]_{B}} \\
& M=\left(P_{B^{\prime}}^{m \times m}\right)^{-1} A P_{B}^{n \times n}
\end{aligned}
$$

How is M done?

- $P_{B}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]$
- $A P_{B}=A\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}\end{array}\right]=\left[\begin{array}{llll}A \mathbf{v}_{1} & A \mathbf{v}_{2} & \ldots & A \mathbf{v}_{n}\end{array}\right]$
- $A \mathbf{v}_{i}=T\left(\mathbf{v}_{i}\right): A P_{B}=\left[T\left(\mathbf{v}_{1}\right) T\left(\mathbf{v}_{2}\right) \ldots T\left(\mathbf{v}_{n}\right)\right]$
- $M=P_{B^{\prime}}^{-1} A P_{B}=\left[\begin{array}{lllll}P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{1}\right) & P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{2}\right) & \ldots & P_{B^{\prime}}^{-1} T\left(\mathbf{v}_{n}\right)\end{array}\right]$
- $M=\left[\left[\begin{array}{lll}T\left(\mathbf{v}_{1}\right)\end{array}\right]_{B^{\prime}} \quad\left[\begin{array}{lll}T\left(\mathbf{v}_{2}\right)\end{array}\right]_{B^{\prime}} \quad \ldots \quad\left[\begin{array}{l}T\left(\mathbf{v}_{n}\right)\end{array}\right]_{B^{\prime}}\right]$

Hence, if we change the basis from the standard basis of \mathbb{R}^{n} and \mathbb{R}^{m} the matrix representation of T changes

Similarity

Particular case $m=n$:

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation
and $B=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ be a basis \mathbb{R}^{n}.
Let A be the matrix corresponding to T in standard coordinates: $T(\mathbf{x})=A \mathbf{x}$.
Let

$$
P=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}
\end{array}\right]
$$

be the matrix whose columns are the vectors of B. Then for all $x \in \mathbb{R}^{n}$,

$$
[T(\mathbf{x})]_{B}=P^{-1} A P[\mathbf{x}]_{B}
$$

Or, the matrix $A_{[B, B]}=P^{-1} A P$ performs the same linear transformation as the matrix A but expressed it in terms of the basis B.

Similarity

Definition

A square matrix C is similar (represent the same linear transformation) to the matrix A if there is an invertible matrix P such that

$$
C=P^{-1} A P
$$

Similarity defines an equivalence relation:

- (reflexive) a matrix A is similar to itself
- (symmetric) if C is similar to A, then A is similar to C $C=P^{-1} A P, \quad A=Q^{-1} C Q, \quad Q=P^{-1}$
- (transitive) if D is similar to C, and C to A, then D is similar to A

Example

- $x^{2}+y^{2}=1$ circle in standard form
- $x^{2}+4 y^{2}=1$ ellipse in standard form
- $5 x^{2}+5 y^{2}-6 x y=2$??? Try rotating $\pi / 4$ anticlockwise

$$
\begin{aligned}
& A_{T}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=P \\
& \mathbf{v}=P[\mathbf{v}]_{B} \Longleftrightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right] \\
& X^{2}+4 Y^{2}=1
\end{aligned}
$$

Example

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+3 y \\
-x+5 y
\end{array}\right]
$$

What is its effect on the $x y$-plane?
Let's change the basis to

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\}
$$

Find the matrix of T in this basis:

- $C=P^{-1} A P, A$ matrix of T in standard basis, P is transition matrix from B to standard

$$
C=P^{-1} A P=\frac{1}{2}\left[\begin{array}{cc}
-1 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

Example (cntd)

- the B coordinates of the B basis vectors are

$$
\left[\mathbf{v}_{1}\right]_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{B}, \quad\left[\mathbf{v}_{2}\right]_{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]_{B}
$$

- so in B coordinates T is a stretch in the direction \mathbf{v}_{1} by 4 and in dir. \mathbf{v}_{2} by 2 :

$$
\left[T\left(\mathbf{v}_{1}\right)\right]_{B}=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]_{B}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]_{B}=4\left[\mathbf{v}_{1}\right]_{B}
$$

- The effect of T is however the same no matter what basis, only the matrices change! So also in the standard coordinates we must have:

$$
A \mathbf{v}_{1}=4 \mathbf{v}_{1} \quad A \mathbf{v}_{2}=2 \mathbf{v}_{2}
$$

- Linear transformations and proofs that a given mapping is linear
- two-way relationship between matrices and linear transformations
- Matrix representation of a transformation with respect to two arbitrary basis
- Similarity of square matrices

