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Linear TransformationsOutline

1. Linear Transformations
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Linear TransformationsResume

• vector spaces and subspaces

• range and null space, and rank

• linear independency

• bases and dimensions

• change of basis from standard to arbitrary basis

• change of basis between two arbitrary bases
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Linear TransformationsOutline

1. Linear Transformations
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Linear TransformationsLinear Transformations

Definition (Linear Transformation)

Let V and W be two vector spaces. A function T : V →W is linear if for all u, v ∈ V and all
α ∈ R:

1. T (u + v) = T (u) + T (v)
2. T (αu) = αT (u)

A linear transformation is a linear function between two vector spaces

• If V = W also known as linear operator

• Equivalent condition: T (αu + βv) = αT (u) + βT (v)

• for all 0 ∈ V ,T (0) = 0
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Linear Transformations

Example (Linear Transformations)

• vector space V = R, F1(x) = px for any p ∈ R

∀x , y ∈ R, α, β ∈ R : F1(αx + βy) = p(αx + βy) = α(px) + β(py)

= αF1(x) + βF1(y)

• vector space V = R, F2(x) = px + q for any p, q ∈ R or F3(x) = x2 are not linear
transformations

T (x + y) 6= T (x) + T (y) for some x , y ∈ R

• vector spaces V = Rn, W = Rm, m × n matrix A, T (x) = Ax for x ∈ Rn

T (u + v) = A(u + v) = Au + Av = T (u) + T (v)
T (αu) = A(αu) = αAu = αT (u)
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Linear Transformations

Example (Linear Transformations)

• vector spaces V = Rn, W : f : R→ R. T : Rn →W :

T (u) = T



u1
u2
...
un


 = pu1,u2,...,un = pu

pu1,u2,...,un = u1x
1 + u2x

2 + u3x
3 + · · ·+ unx

n

pu+v(x) = · · · = (pu + pv)(x)
pαu(x) = · · · = αpu(x)

9



Linear TransformationsLinear Transformations and Matrices

• any m × n matrix A defines a linear transformation T : Rn → Rm  TA

• for every linear transformation T : Rn → Rm there is a matrix A such that T (v) = Av  AT

Theorem

Let T : Rn → Rm be a linear transformation and {e1, e2, . . . , en} denote the standard basis of Rn

and let A be the matrix whose columns are the vectors T (e1),T (e2), . . . ,T (en): that is,

A =
[
T (e1) T (e2) . . . T (en)

]
Then, for every x ∈ Rn, T (x) = Ax.

Proof: write any vector x ∈ Rn as lin. comb. of standard basis and then make the image of it.
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Example

T : R3 → R3

T

xy
z

 =

 x + y + z
x − y

x + 2y − 3z


• The image of u = [1, 2, 3]T can be found by substitution: T (u) = [6,−1,−4]T .

• to find AT :

T (e1) =

11
1

 T (e2) =

 1
−1
2

 T (e3) =

 1
0
−3



A = [T (e1) T (e2) T (en)] =

1 1 1
1 −1 0
1 2 −3


T (u) = Au = [6,−1,−4]T .



Linear TransformationsLinear Transformation in R2

• We can visualize them!

• Reflection in the x axis:

T :

[
x
y

]
7→
[
x
−y

]
AT =

[
1 0
0 −1

]

• Stretching the plane away from the origin

T (x) =
[
2 0
0 3

] [
x
y

]
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Linear Transformation in R2

• Rotation anticlockwise by an angle θ

1

1

e1

e2
T (e1)

T (e2)

(0, 0)
θ

θ

x

y

we search the images of the standard basis vector e1, e2

T (e1) =

[
a
c

]
, T (e2) =

[
b
d

]
they will be orthogonal and with length 1.

A =

[
a b
c d

]
=

[
cos θ − sin θ
sin θ cos θ

]
For π/4:

A =

[
a b
c d

]
=

[
cos θ − sin θ
sin θ cos θ

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]



Linear TransformationsIdentity and Zero Linear Transformations

• For T : V → V the linear transformation such that T (v) = v is called the identity.

• if V = Rn, the matrix AT = I (of size n × n)

• For T : V →W the linear transformation such that T (v) = 0 is called the zero
transformation.

• If V = Rn and W = Rm, the matrix AT is an m × n matrix of zeros.
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Linear TransformationsComposition of Linear Transformations

• Let T : V →W and S : W → U be linear transformations.
The composition of ST is again a linear transformation given by:

ST (v) = S(T (v)) = S(w) = u

where w = T (v)

• ST means do T and then do S : V T−→W
S−→ U

• if T : Rn → Rm and S : Rm → Rp in terms of matrices:

ST (v) = S(T (v)) = S(ATv) = ASATv

note that composition is not commutative
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Linear TransformationsCombinations of Linear Transformations

• If S ,T : V →W are linear transformations between the same vector spaces,
then S + T and αS , α ∈ R are linear transformations.

• hence also αS + βT , α, β ∈ R is
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Linear TransformationsInverse Linear Transformations

• If V and W are finite-dimensional vector spaces of the same dimension, then the inverse of a
lin. transf. T : V →W is the lin. transf such that

T−1(T (v)) = v

• In Rn if T−1 exists, then its matrix satisfies:

T−1(T (v)) = AT−1ATv = Iv

that is, T−1 exists iff (AT )
−1 exists and AT−1 = (AT )

−1

(recall that if BA = I then B = A−1)

• In R2 for rotations:

AT−1 =

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
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Linear Transformations

Example

Is there an inverse to T : R3 → R3?

T

xy
z

 =

 x + y + z
x − y

x + 2y − 3z



A =

1 1 1
1 −1 0
1 2 −3


Since det(A) = 9 then the matrix is invertible, and T−1 is given by the matrix:

A−1 =
1
9

3 5 1
3 −4 1
3 −1 −2

 T−1

uv
w

 =

 1
3u + 5

9v + 1
9w

1
3u −

4
9v + 1

9w
1
3u + 1

9v −
2
9w
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Linear TransformationsChange of Basis for a Linear Transformation

We saw how to find A for a transformation T : Rn → Rm using standard basis in both Rn and Rm.
Now: is there a matrix that represents T wrt two arbitrary bases B and B ′?

Theorem
Let T : Rn → Rm be a linear transformation and
B = {v1, v2, . . . , vn} and B ′ = {v′1, v′2, . . . , v′m} be bases of Rn and Rm.
Then for all x ∈ Rn,

[T (x)]B′ = M[x]B

where M = A[B,B′] is the m × n matrix with the ith column equal to [T (vi )]B′ , the coordinate
vector of T (vi ) wrt the basis B ′.
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Linear Transformations

Proof:

change from B to standard x = Pn×n
B [x]B ∀x ∈ Rn

↓
perform linear transformation T (x) = Ax = APn×n

B [x]B
in standard coordinates

↓
change to basis B ′ [u]B′ = (Pm×m

B′ )−1u ∀u ∈ Rm

[T (x)]B′ = (Pm×m
B′ )−1APn×n

B [x]B

M = (Pm×m
B′ )−1APn×n

B
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Linear Transformations

How is M done?

• PB = [v1 v2 . . . vn]

• APB = A[v1 v2 . . . vn] = [Av1 Av2 . . . Avn]

• Avi = T (vi ): APB = [T (v1) T (v2) . . . T (vn)]

• M = P−1
B′ APB = [P−1

B′ T (v1) P−1
B′ T (v2) . . . P−1

B′ T (vn)]

• M = [[T (v1)]B′ [T (v2)]B′ . . . [T (vn)]B′ ]

Hence, if we change the basis from the standard basis of Rn and Rm the matrix representation of T
changes
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Linear TransformationsSimilarity
Particular case m = n:

Theorem
Let T : Rn → Rn be a linear transformation
and B = {x1, x2, . . . , xn} be a basis Rn.
Let A be the matrix corresponding to T in standard coordinates: T (x) = Ax.
Let

P =
[
x1 x2 · · · xn

]
be the matrix whose columns are the vectors of B. Then for all x ∈ Rn,

[T (x)]B = P−1AP[x]B

Or, the matrix A[B,B] = P−1AP performs the same linear transformation as the matrix A but
expressed it in terms of the basis B.
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Linear TransformationsSimilarity

Definition

A square matrix C is similar (represent the same linear transformation) to the matrix A if there is
an invertible matrix P such that

C = P−1AP.

Similarity defines an equivalence relation:

• (reflexive) a matrix A is similar to itself

• (symmetric) if C is similar to A, then A is similar to C
C = P−1AP, A = Q−1CQ, Q = P−1

• (transitive) if D is similar to C , and C to A, then D is similar to A
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Example

2−2

1

−1

x

y

2−2

1

−1

x

y

• x2 + y2 = 1 circle in standard form

• x2 + 4y2 = 1 ellipse in standard form

• 5x2 + 5y2 − 6xy = 2 ??? Try rotating π/4 anticlockwise

AT =

[
cos θ − sin θ
sin θ cos θ

]
=

[
1√
2
− 1√

2
1√
2

1√
2

]
= P

v = P[v]B ⇐⇒
[
x
y

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
X
Y

]
X 2 + 4Y 2 = 1



Linear Transformations

Example

Let T : R2 → R2:

T

([
x
y

])
=

[
x + 3y
−x + 5y

]
What is its effect on the xy -plane?
Let’s change the basis to

B = {v1, v2} =
{[

1
1

]
,

[
3
1

]}
Find the matrix of T in this basis:

• C = P−1AP, A matrix of T in standard basis, P is transition matrix from B to standard

C = P−1AP =
1
2

[
−1 3
1 −1

] [
1 3
−1 5

] [
1 3
1 1

]
=

[
4 0
0 2

]
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Linear Transformations

Example (cntd)

• the B coordinates of the B basis vectors are

[v1]B =

[
1
0

]
B

, [v2]B =

[
0
1

]
B

• so in B coordinates T is a stretch in the direction v1 by 4 and in dir. v2 by 2:

[T (v1)]B =

[
4 0
0 2

] [
1
0

]
B

=

[
4
0

]
B

= 4[v1]B

• The effect of T is however the same no matter what basis, only the matrices change! So also
in the standard coordinates we must have:

Av1 = 4v1 Av2 = 2v2
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Linear TransformationsSummary

• Linear transformations and proofs that a given mapping is linear

• two-way relationship between matrices and linear transformations

• Matrix representation of a transformation with respect to two arbitrary basis

• Similarity of square matrices
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