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Complexity of matrix algorithms B o

flop counts
e vector-vector operations
e matrix-vector product

e matrix-matrix product



Operation Count

Flop counts

floating-point operation (flop)

e one floating-point addition, subtraction, multiplication, or division

e other common definition: one multiplication followed by one addition
flop counts of matrix algorithm

e total number of flops is typically a polynomial of the problem dimensions

o usually simplified by ignoring lower-order terms
applications

e a simple, machine-independent measure of algorithm complexity

e not an accurate predictor of computation time on modern computers
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Vector-vector operations Other Topics

e inner product of two n-vectors
T
X'y =X1y1+ XYoo+ ...+ Xn¥n

n multiplications and n — 1 additions = 2n flops (2n if n > 1)
e addition or subtraction of n-vectors: n flops

e scalar multiplication of n-vector : n flops



Matrix-vector product

matrix-vector product with m x n-matrix A:
y = Ax
m elements in y; each element requires an inner product of length n:
(2n — 1)m flops
approximately 2mn for large n special cases
e m = n, A diagonal: n flops
e m = n, A lower triangular: n(n+ 1) flops

o A very sparse (lots of zero coefficients): #flops < 2mn
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Matrix-matrix product Other Topicn

product of m x n-matrix A and n x p-matrix B:
C=AB

mp elements in C; each element requires an inner product of length n:
mp(2n — 1)flops

approximately 2mnp for large n.
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2. LU Factorization



Overview

e factor-solve method

e LU factorization

e solving Ax = b with A nonsingular
e the inverse of a nonsingular matrix
e LU factorization algorithm

e effect of rounding error

e sparse LU factorization

LU Factorization
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Definitions Orher o

Definition (Triangular Matrices)

An n x n matrix is said to be upper triangular if a;j = 0 for / > j and lower triangular if a;j = 0 for
i < j. Also A is said to be triangular if it is either upper triangular or lower triangular.

Example:
300 351
210 013
143 007
Definition (Diagonal Matrices)
An n x n matrix is diagonal if a;; = 0 whenever i # j. J

Example:

O O
o = O
w O O
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Multiple right-hand sides
two equations with the same matrix but different right-hand sides
Av=b,  Ai=b

e factor A once (f flops)
e solve with right-hand side b (s flops)

o solve with right-hand side b (s flops)

cost: f + 2s instead of 2(f + s) if we solve second equation from scratch

conclusion: if f > s, we can solve the two equations at the cost of one

LU factorization 7-4



LU factorization
LU factorization without pivoting
A=LU

e [ unit lower triangular, U upper triangular

e does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

A=PLU

e P permutation matrix, L unit lower triangular, U upper triangular

e exists if and only if A is nonsingular (see later)

cost: (2/3)n3 if A has order n

LU factorization
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Solving linear equations by LU factorization

solve Ax = b with A nonsingular of order n

factor-solve method using LU factorization

1. factor A as A = PLU ((2/3)n? flops)
2. solve (PLU)z = b in three steps

e permutation: z; = PTb (0 flops)
e forward substitution: solve Lzy = 21 (n? flops)
e back substitution: solve Uz = 25 (n? flops)

total cost: (2/3)n3 + 2n? flops, or roughly (2/3)n?
this is the standard method for solving Az = b

LU factorization
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Multiple right-hand sides

two equations with the same matrix A (nonsingular and n x n):
Az =b, A=)
o factor A once

e forward/back substitution to get x

e forward/back substitution to get
cost: (2/3)n® + 4n? or roughly (2/3)n?
exercise: propose an efficient method for solving

Az =b, ATi=0b
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Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

A=PLU

e inverse from LU factorization

A7l = (PLU) ' =Uu~LPT

e gives interpretation of solve step: evaluate
r=A"=U"L""P"
in three steps

21 = PTb, 29 = L712'17 z=U 12

LU factorization 7-8



Computing the inverse
solve AX = I by solving n equations

AX1:€1, AX2=62, ey Aanen

X is the ith column of X; e; is the ¢th unit vector of size n

e one LU factorization of A: 2n3/3 flops

e 1 solve steps: 2n> flops

total: (8/3)n® flops

conclusion: do not solve Az = b by multiplying A~! with b

LU factorization 79



LU factorization without pivoting

partition A, L, U as block matrices:

A 1 0 uy U
A= | 11 12 I = U= 11 12
{ Agr Az |’ Ly Loo |7 0 Ux

e a7 and wuq; are scalars

e Loy unit lower-triangular, Uso upper triangular of order n — 1

determine L and U from A = LU, i.e.,
air A _ 1 0 uir Uz
Ay Aso La1 Lo 0 Us

Uy Uiz
uirlor  L21Uis + LooUs:
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recursive algorithm:
e determine first row of U and first column of L

U] = a1, Uiz = Aig, Loy = (1/a11) Az

e factor the (n — 1) x (n — 1)-matrix Agy — Lo1Usa as
Azg — Lo1Ura = LyaUs:

this is an LU factorization (without pivoting) of order n — 1

cost: (2/3)n? flops (no proof)

LU factorization
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Example

LU factorization (without pivoting) of

A=

S = 0
N © N
NelyisNNe]

write as A = LU with L unit lower triangular, U upper triangular

8 2 9 1 0 0 Uil U2 U3
A= 4 9 4 = l21 1 0 0 U2 U3
6 7 9 l31 l32 1 0 0 Uuss3

LU factorization
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e first row of U, first column of L:
8 2 9 1 0 0
4 9 4 = 1/2 1 0 0 U22 U23
6 7 9 3/4 3 1 0 us3

e second row of U, second column of L:
9 4| [1/2 1 0 Uz U23
R ISR I P |
8 -1/2 B 1 0 8 —1/2
11/2 9/4 o 11/16 1 0 uss

o third row of U: ugg =9/4 + 11/32 = 83/32

[en) o
[\V]
©

—_

conclusion:
8 2 9 1 0 0 8 2 9
A=14 9 4| =] 1/2 1 0 0 8 -—-1/2
6 7 9 3/4 11/16 1 0 0 83/32
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Not every nonsingular A can be factored as A = LU

1 0 0 1 0 0 Ul U2 U3
A= 0 0 2 = l21 1 0 0 U2 U223
01 -1 lgl l32 1 0 0 Uuss3
o first row of U, first column of L:
1 0 0 1 0 0 1 0 0
0 0 2 = 0 1 0 0 U292 U23
01 -1 0 l32 1 0 0 Uus3s3

e second row of U, second column of L:

0 2] [ 1 0] u wus
1 -1 N 132 1 L 0 uss

UQQZO,U23:2,132'0:1?
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LU factorization (with row pivoting)
if A'is n x n and nonsingular, then it can be factored as
A=PLU
P is a permutation matrix, L is unit lower triangular, U is upper triangular

e not unique; there may be several possible choices for P, L, U
e interpretation: permute the rows of A and factor PTA as PTA = LU
e also known as Gaussian elimination with partial pivoting (GEPP)

e cost: (2/3)n3 flops
we will skip the details of calculating P, L, U
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055 00 1 1 0 0 6 8 8
29 0[|=[010 /3 1 0 0 19/3 -8/3
6 8 8 100 0 15/19 1 0 0 135/19

05 5 010 1 0 0 29 0
29 0|=]100 0 1 0 05 5
6 8 8 0 01 3 —19/5 1 0 0 27
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Effect of rounding error

REIFEN

o I
T1-105 T 1100

exact solution:

z1

let us solve the equations using LU factorization, rounding intermediate
results to 4 significant decimal digits

we will do this for the two possible permutation matrices:
10 0 1
p[10] o p=[0 1]

LU factorization 7-17



first choice of P: P = I (no pivoting)

0° 1] [ 1 0 105 1
1 1| ] 10° 1 0 1-10°

L, U rounded to 4 decimal significant digits

10 1070 1
L*{1051}’ U*{ 0 —105}

forward substitution

1 0 21 - 1 _ — _10°
TR E R p—

back substitution

10~° 1 1
0 —10° To

error in z1 is 100%

|:71105:| - z1=0, zy=1
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second choice of P: interchange rows

1 11 [ 1 o]t 1
10° 1] [10° 1|[0 1-107°

L, U rounded to 4 decimal significant digits

1 0 11
L_[10*5 1}7 U‘[o 1}

forward substitution
1 0 21 o
1075 1 29 -

backward substitution

1 1 Ty _ 0 _ _
B[] = e e

error in x1, x2 is about 107

(1):| - z21=0, 2z=1

LU factorization 7-19



conclusion:

o for some choices of P, small rounding errors in the algorithm cause very
large errors in the solution

e this is called numerical instability: for the first choice of P, the
algorithm is unstable; for the second choice of P, it is stable

e from numerical analysis: there is a simple rule for selecting a good
(stable) permutation (we'll skip the details, since we skipped the details
of the factorization algorithm)

e in the example, the second permutation is better because it permutes
the largest element (in absolute value) of the first column of A to the
1,1-position
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Sparse linear equations
if A is sparse, it is usually factored as
A=PLUP,
Py and P, are permutation matrices
e interpretation: permute rows and columns of A and factor A = PTAPJ

A=LU

e choice of P; and P, greatly affects the sparsity of L and U: many
heuristic methods exist for selecting good permutations

e in practice: #flops < (2/3)n?; exact value is a complicated function of
n, number of nonzero elements, sparsity pattern

LU factorization 7-21



Conclusion

different levels of understanding how linear equation solvers work:

highest level: x = A\Db costs (2/3)n3; more efficient than x = inv(A)*b
intermediate level: factorization step A = PLU followed by solve step

lowest level: details of factorization A = PLU

e for most applications, level 1 is sufficient
e in some situations (e.g., multiple right-hand sides) level 2 is useful

e level 3 is important only for experts who write numerical libraries

LU factorization 7-22
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Numerical Solutions oo S

A matrix A is said to be ill conditioned if relatively small changes in the entries of A can cause
relatively large changes in the solutions of Ax = b.

A is said to be well conditioned if relatively small changes in the entries of A result in relatively
small changes in the solutions of Ax = b.

reaching RREF as in Gauss-Jordan requires more computation and more numerical instability
hence disadvantageous.

Gauss elimination is a direct method: the amount of operations can be specified in advance.
Indirect or Iterative methods work by iteratively improving approximate solutions until a
desired accuracy is reached. Amount of operations depend on the accuracy required. (way to
go if the matrix is sparse)

13
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Gauss-Seidel Iterative Method Oobs o "
Example
X1 — 0.25X2 — 0.25X3 = 50
—0.25x1 + X2 — 0.25x4 = 50
—0.25x1 + x3 — 0.26x4 = 25

— 0‘25X2 — 0.25X3 + X4 = 25

X1 = 0.25X2 + 0.25X3 + 50
xo = 0.25x1 + 0.25x4 + 50
x3 = 0.25x1 + 0.25x4 + 25
X4 = 0.25X2 + 0.25X3 + 25

We start from an approximation, eg, x}o) = 100,x§0) =100, xéo) = 100,x§0) = 100, and use the equatiuons
above to find a perhaps better approximation:

XV = 0.25x{” + 0.25x{” + 50.00 = 100.00
P = 0.25xY + 0.25x” + 50.00 = 100.00
D = 0.25xY + 0.25x” + 2500 = 75.00

KM = 0.25x{" + 0.25x" + 2500 = 68.75



Operation Count
LU Factorization
Other Topics

X = 0.25x" + 0.25x" + 50.00 = 93.750
P = 0.25x? + 0.25xY + 50.00 = 90.625
P = 0.25x + 0.25xY + 25.00 = 65.625

X2 = 0.25x7) 4+ 0.25x% + 25.00 = 64.062



	Operation Count
	LU Factorization
	Other Topics

