
Chapter	20		
The	STL	

(containers,	iterators,	and	algorithms)	

Bjarne	Stroustrup	
		

www.stroustrup.com/Programming	



Abstract	
n  This	lecture	and	the	next	present	the	STL	–	the	
containers	and	algorithms	part	of	the	C++	standard	
library	

n  The	STL	is	an	extensible	framework	dealing	with	data	
in	a	C++	program.		

n  First,	I	will	present	the	general	ideal,	then	the	
fundamental	concepts,	and	finally	examples	of	
containers	and	algorithms.		

n  The	key	notions	of	sequence	and	iterator	used	to	tie	
data	together	with	algorithms	(for	general	
processing)	are	also	presented.		

Stroustrup/Programming	-	Nov'13	 2	



Overview	
n  Common	tasks	and	ideals	
n  Generic	programming	
n  Containers,	algorithms,	and	iterators	
n  The	simplest	algorithm:	find()	
n  Parameterization	of	algorithms	

n  find_if()	and	function	objects	
n  Sequence	containers	

n  vector	and	list	
n  Associative	containers	

n  map,	set	
n  Standard	algorithms	

n  copy,	sort,	…	
n  Input	iterators	and	output	iterators	

n  List	of	useful	facilities	
n  Headers,	algorithms,	containers,	function	objects	

Stroustrup/Programming	-	Nov'13	 3	



Common	tasks	
n  Collect	data	into	containers	
n  Organize	data	

n  For	printing	
n  For	fast	access	

n  Retrieve	data	items	
n  By	index	(e.g.,	get	the	Nth	element)	
n  By	value	(e.g.,	get	the	first	element	with	the	value	"Chocolate")	
n  By	properties	(e.g.,	get	the	first	elements	where	“age<64”)	

n  Add	data	
n  Remove	data	
n  Sorting	and	searching	
n  Simple	numeric	operations	

Stroustrup/Programming	-	Nov'13	 4	



Observation	

We	can	(already)	write	programs	that	are	very	similar	
independent	of	the	data	type	used	
n  Using	an	int	isn’t	that	different	from	using	a	double	
n  Using	a	vector<int>	isn’t	that	different	from	using	a	
vector<string>	

Stroustrup/Programming	-	Nov'13	 5	



Ideals	

We’d	like	to	write	common	programming	tasks	so	that	
we	don’t	have	to	re-do	the	work	each	time	we	find	a	
new	way	of	storing	the	data	or	a	slightly	different	way	
of	interpreting	the	data	
n  Finding	a	value	in	a	vector	isn’t	all	that	different	from	
finding	a	value	in	a	list	or	an	array	

n  Looking	for	a	string	ignoring	case	isn’t	all	that	different	from	
looking	at	a	string	not	ignoring	case	

n  Graphing	experimental	data	with	exact	values	isn’t	all	that	
different	from	graphing	data	with	rounded	values	

n  Copying	a	file	isn’t	all	that	different	from	copying	a	vector	

Stroustrup/Programming	-	Nov'13	 6	



Ideals	(continued)	

n  Code	that’s	
n  Easy	to	read	
n  Easy	to	modify	
n  Regular	
n  Short		
n  Fast		

n  Uniform	access	to	data	
n  Independently	of	how	it	is	stored	
n  Independently	of	its	type	

n  … 		
	

Stroustrup/Programming	-	Nov'13	 7	



Ideals	(continued)	

n  …	
n  Type-safe	access	to	data	
n  Easy	traversal	of	data	
n  Compact	storage	of	data	
n  Fast	

n  Retrieval	of	data	
n  Addition	of	data	
n  Deletion	of	data	

n  Standard	versions	of	the	most	common	algorithms	
n  Copy,	find,	search,	sort,	sum,	…	

Stroustrup/Programming	-	Nov'13	 8	



Examples		
n  Sort	a	vector	of	strings	
n  Find	an	number	in	a	phone	book,	given	a	name	
n  Find	the	highest	temperature	
n  Find	all	values	larger	than	800	
n  Find	the	first	occurrence	of	the	value	17	
n  Sort	the	telemetry	records	by	unit	number	
n  Sort	the	telemetry	records	by	time	stamp	
n  Find	the	first	value	larger	than	“Petersen”?	
n  What	is	the	largest	amount	seen?	
n  Find	the	first	difference	between	two	sequences	
n  Compute	the	pairwise	product	of	the	elements	of	two	sequences	
n  What	are	the	highest	temperatures	for	each	day	in	a	month?	
n  What	are	the	top	10	best-sellers?	
n  What’s	the	entry	for	“C++”	(say,		in	Google)?	
n  What’s	the	sum	of	the	elements?	

Stroustrup/Programming	-	Nov'13	 9	



Generic	programming	
n  Generalize	algorithms	

n  Sometimes	called	“lifting	an	algorithm”	

n  The	aim	(for	the	end	user)	is	
n  Increased	correctness	

n  Through	better	specification	

n  Greater	range	of	uses	
n  Possibilities	for	re-use	

n  Better	performance	
n  Through	wider	use	of	tuned	libraries	
n  Unnecessarily	slow	code	will	eventually	be	thrown	away	

n  Go	from	the	concrete	to	the	more	abstract	
n  The	other	way	most	often	leads	to	bloat	

	
Stroustrup/Programming	-	Nov'13	 10	



Lifting	example	(concrete	algorithms)	

double	sum(double	array[],	int	n) 	//	one	concrete	algorithm	(doubles	in	array)	
{	

	double	s	=	0;	
	for	(int	i	=	0;	i	<	n;	++i	)	s	=	s	+	array[i];	
	return	s;	

}	
	
struct	Node	{	Node*	next;	int	data;	};	
	

int	sum(Node*	first) 	 	//	another	concrete	algorithm	(ints	in	list)	
{	

	int	s	=	0;	
	while	(first)	{ 	 	 	//	terminates	when	expression	is	false	or	zero	
	 	s	+=	first->data;	
	 	first	=	first->next;	
	}	
	return	s;	

}	
Stroustrup/Programming	-	Nov'13	 11	



Lifting	example	(abstract	the	data	structure)	

	
//	pseudo-code		for	a	more	general	version	of		both	algorithms	
	

int	sum(data) 	//	somehow	parameterize	with	the	data	structure	
{	
	int	s	=	0; 	 	 	//	initialize	
	while	(not	at	end)	{ 	 	//	loop	through	all	elements	
	 					s	=	s	+	get	value; 	//	compute	sum	
	 					get	next	data	element;	
	}	
	return	s; 	 	 	//	return	result	

}	
	
n  We	need	three	operations	(on	the	data	structure):	

n  not	at	end	
n  get	value	
n  get	next	data	element	

	
Stroustrup/Programming	-	Nov'13	 12	



Lifting	example	(STL	version)	

//	Concrete	STL-style	code		for	a	more	general	version	of	both	algorithms	
	

template<class	Iter,	class	T>	 	//	Iter	should	be	an	Input_iterator	
	 	 	 	 	//	T	should	be	something	we	can	+	and	=	

T	sum(Iter	first,	Iter	last,	T	s) 	//	T	is	the	“accumulator	type”	
{	

		while	(first!=last)	{	
	 	s	=	s	+	*first;	
	 	++first;	
	}	
	return	s;	

}	
n  Let	the	user	initialize	the	accumulator	

float	a[]	=	{	1,2,3,4,5,6,7,8	};		
double	d	=	0;	
d	=	sum(a,a+sizeof(a)/sizeof(*a),d);	

Stroustrup/Programming	-	Nov'13	 13	



Lifting	example	

n  Almost	the	standard	library	accumulate	
n  I	simplified	a	bit	for	terseness	
(see	21.5	for	more	generality	and	more	details)	

n  Works	for	
n  arrays	
n  vectors	
n  lists	
n  istreams	
n  …	

n  Runs	as	fast	as	“hand-crafted”	code	
n  Given	decent	inlining	

n  The	code’s	requirements	on	its	data	has	become	explicit	
n  We	understand	the	code	better	

Stroustrup/Programming	-	Nov'13	 14	



The	STL	

n  Part	of	the	ISO	C++	Standard	Library	
n  Mostly	non-numerical	

n  Only	4	standard	algorithms	specifically	do	computation	
n  Accumulate,	inner_product,	partial_sum,	adjacent_difference	

n  Handles	textual	data	as	well	as	numeric	data	
n  E.g.	string	

n  Deals	with	organization	of	code	and	data	
n  Built-in	types,	user-defined	types,	and	data	structures	

n  Optimizing	disk	access	was	among	its	original	uses	
n  Performance	was	always	a	key	concern	

Stroustrup/Programming	-	Nov'13	 15	



The	STL	
n  Designed	by	Alex	Stepanov	
n  General	aim:	The	most	general,	most	
efficient,	most	flexible	representation	
of	concepts	(ideas,	algorithms)	
n  Represent	separate	concepts	separately	in	code	
n  Combine	concepts	freely	wherever	meaningful	

n  General	aim	to	make	programming	“like	math”	
n  or	even	“Good	programming	is	math”	
n  works	for	integers,	for	floating-point	numbers,	for	
polynomials,	for	…	

Stroustrup/Programming	-	Nov'13	 16	



Basic	model	
n  Algorithms	

	sort,	find,	search,	copy,	…	

n  Containers	
															vector,	list,	map,	unordered_map,	…	

Stroustrup/Programming	-	Nov'13	 17	

iterators	

•  Separation	of	concerns	
–  Algorithms	manipulate	

data,	but	don’t	know	
about	containers	

–  Containers	store	data,	
but	don’t	know	about	
algorithms	

–  Algorithms	and	
containers	interact	
through	iterators	
•  Each	container	has	its	
own	iterator	types	



The	STL	
n  An	ISO	C++	standard	framework	of	about	10	
containers	and	about	60	algorithms	connected	by	
iterators	
n  Other	organizations	provide	more	containers	and	
algorithms	in	the	style	of	the	STL	

n  Boost.org,	Microsoft,	SGI,	…	

n  Probably	the	currently	best	known	and	most	widely	
used	example	of	generic	programming	

Stroustrup/Programming	-	Nov'13	 18	



The	STL	
n  If	you	know	the	basic	concepts	and	a	few	examples	you	
can	use	the	rest	

n  Documentation	
n  SGI	

n  http://www.sgi.com/tech/stl/	(recommended	because	of	clarity)	
n  Dinkumware	

n  http://www.dinkumware.com/refxcpp.html	(beware	of	several	library	
versions)	

n  Rogue	Wave	
n  http://www.roguewave.com/support/docs/sourcepro/stdlibug/
index.html	

n  More	accessible	and	less	complete	documentation	
n  Appendix	B	

Stroustrup/Programming	-	Nov'13	 19	



Basic	model	
n  A	pair	of	iterators	defines	a	sequence	

n  The	beginning	(points	to	the	first	element	–	if	any)	
n  The	end	(points	to	the	one-beyond-the-last	element)	

Stroustrup/Programming	-	Nov'13	 20	

…	

begin:	 end:	

•  An	iterator	is	a	type	that	supports	the		“iterator	operations”	
•  ++	Go	to	next	element	
•  *	Get	value	
•  ==	Does	this	iterator	point	to	the	same	element	as	that	iterator?	

•  Some	iterators	support	more	operations	(e.g.	--,	+,	and	[	])	



Containers	
(hold	sequences	in	difference	ways)	

n  vector	

n  list	
(doubly	linked)	

n  set	
(a	kind	of	tree)	

Stroustrup/Programming	-	Nov'13	 21	

0	 1	 2	 3	

0	 1	

1	0	

6	

2	

5	

7	

3	 4	

2	



The	simplest	algorithm:	find()	

//	Find	the	first	element	that	equals	a	value	
template<class	In,	class	T>	
In	find(In	first,	In	last,	const	T&	val)	
{	

	while	(first!=last	&&	*first	!=	val)	++first;	
	return	first;	

}	
	

void	f(vector<int>&	v,	int	x) 	//	find	an	int	in	a	vector	
{	

	vector<int>::iterator	p	=	find(v.begin(),v.end(),x);	
	if	(p!=v.end())	{	/*	we	found		x	*/	}	
	//	…	

}	

Stroustrup/Programming	-	Nov'13	 22	

…	

begin:	 end:	

We	can	ignore	(“abstract	away”)	the	differences	between	
containers	



find()	
generic	for	both	element	type	and	container	type	

void	f(vector<int>&	v,	int	x) 	 	//	works	for	vector	of	ints	
{	

	vector<int>::iterator	p	=	find(v.begin(),v.end(),x);	
	if	(p!=v.end())	{	/*	we	found		x	*/	}	
	//	…	

}	
	

void	f(list<string>&	v,	string	x) 	 	//	works	for	list	of	strings	
{	

	list<string>::iterator	p	=	find(v.begin(),v.end(),x);	
	if	(p!=v.end())	{	/*	we	found		x	*/	}	
	//	…	

}	
	

void	f(set<double>&	v,	double	x) 	 	//	works	for	set	of	doubles	
{	

	set<double>::iterator	p	=	find(v.begin(),v.end(),x);	
	if	(p!=v.end())	{	/*	we	found		x	*/	}	
	//	…	

}	
Stroustrup/Programming	-	Nov'13	 23	



Algorithms	and	iterators	
n  An	iterator	points	to	(refers	to,	denotes)	an	element	of	a	

sequence	
n  The	end	of	the	sequence	is	“one	past	the	last	element”	

n  	not	“the	last	element”	
n  That’s	necessary	to	elegantly	represent	an	empty	sequence	
n  One-past-the-last-element	isn’t	an	element	

n  You	can	compare	an	iterator	pointing	to	it	
n  You	can’t	dereference	it	(read	its	value)	

n  Returning	the	end	of	the	sequence	is	the	standard	idiom	for	
“not	found”	or	“unsuccessful”	

Stroustrup/Programming	-	Nov'13	 24	

0	 1	 2	 3	

the	end:	

An	empty	sequence:	

begin:															end:	
some	
iterator:	



Simple	algorithm:	find_if()	
n  Find	the	first	element	that	matches	a	criterion	
(predicate)	
n  Here,	a	predicate	takes	one	argument	and	returns	a	bool	
	
template<class	In,	class	Pred>	
In	find_if(In	first,	In	last,	Pred	pred)	
{	
	while	(first!=last	&&	!pred(*first))	++first;	
	return	first;	

}	
	

void	f(vector<int>&	v)	
{	
	vector<int>::iterator	p	=	find_if(v.begin(),v.end,Odd());	
	if	(p!=v.end())	{	/*	we	found	an	odd	number	*/	}	
	//	…	

}	
Stroustrup/Programming	-	Nov'13	 25	

A	predicate	



Predicates	
n  A	predicate	(of	one	argument)	is	a	function	or	a	function	object	

that	takes	an	argument	and	returns	a	bool	
n  For	example	

n  A	function	
bool	odd(int	i)	{	return	i%2;	}	//	%	is	the	remainder	(modulo)	operator	
odd(7); 	 	 									//	call	odd:	is	7	odd?	
	

n  A	function	object	
struct	Odd	{	
	 	bool	operator()(int	i)	const	{	return	i%2;	}	

};	
Odd	odd; 	//	make	an	object	odd	of	type	Odd	
odd(7); 	 	//	call	odd:	is	7	odd?	

Stroustrup/Programming	-	Nov'13	 26	



Function	objects	

n  A	concrete	example	using	state	

template<class	T>	struct	Less_than	{	
	T	val; 	//	value	to	compare	with	
	Less_than(T&	x)	:val(x)	{	}	
	bool	operator()(const	T&	x)	const	{	return	x	<	val;	}	

};	
	
//	find	x<43	in	vector<int>	:	
p=find_if(v.begin(),	v.end(),	Less_than(43));		
	
//	find	x<"perfection"	in	list<string>:	
q=find_if(ls.begin(),	ls.end(),	Less_than("perfection"));		

Stroustrup/Programming	-	Nov'13	 27	



Function	objects	

n  A	very	efficient	technique	
n  inlining	very	easy	

n  and	effective	with	current	compilers	

n  Faster	than	equivalent	function	
n  And	sometimes	you	can’t	write	an	equivalent	function	

n  The	main	method	of	policy	parameterization	in	the	STL	
n  Key	to	emulating	functional	programming	techniques	in	C++	

Stroustrup/Programming	-	Nov'13	 28	



Policy	parameterization	
n  Whenever	you	have	a	useful	algorithm,	you	eventually	want	

to	parameterize	it	by	a	“policy”.	
n  For	example,	we	need	to	parameterize	sort	by	the	comparison	criteria	

	

struct	Record	{	
	string	name; 	 	//	standard	string	for	ease	of	use	
	char	addr[24]; 	//	old	C-style	string	to	match	database	layout	
	//	…	

};	
	

vector<Record>	vr;	
//	…	
sort(vr.begin(),	vr.end(),	Cmp_by_name()); 	//	sort	by	name	
sort(vr.begin(),	vr.end(),	Cmp_by_addr()); 	//	sort	by	addr	

Stroustrup/Programming	-	Nov'13	 29	



Comparisons	
//	Different	comparisons	for	Rec	objects:	
	
struct		Cmp_by_name	{	

	bool	operator()(const	Rec&	a,	const	Rec&	b)	const	
	 	{	return	a.name	<	b.name;	}	 	//	look	at	the	name	field	of	Rec	

};	
	
struct		Cmp_by_addr	{	

	bool	operator()(const	Rec&	a,	const	Rec&	b)	const	
	 	{	return	0	<	strncmp(a.addr,	b.addr,	24);	} 	//	correct?	

};	
	
//	note	how	the	comparison	function	objects	are	used	to	hide	ugly	
//	and	error-prone	code		
	

Stroustrup/Programming	-	Nov'13	 30	



Policy	parameterization	
n  Whenever	you	have	a	useful	algorithm,	you	eventually	want	

to	parameterize	it	by	a	“policy”.	
n  For	example,	we	need	to	parameterize	sort	by	the	comparison	criteria	

	

vector<Record>	vr;	
//	…	
sort(vr.begin(),	vr.end(),	

	 	[]	(const	Rec&	a,	const	Rec&	b)	
	 	 	{	return	a.name	<	b.name;	}	 	//	sort	by	name	
	);	

	
sort(vr.begin(),	vr.end(),	

	 	[]	(const	Rec&	a,	const	Rec&	b)	
	 	 	{	return	0	<	strncmp(a.addr,	b.addr,	24);	}		//	sort	by	addr	
	);	

Stroustrup/Programming	-	Nov'13	 31	



Policy	parameterization	
n  Use	a	named	object	as	argument	

n  If	you	want	to	do	something	complicated	
n  If	you	feel	the	need	for	a	comment	
n  If	you	want	to	do	the	same	in	several	places	

n  Use	a	lambda	expression	as	argument	
n  If	what	you	want	is	short	and	obvious	

n  Choose	based	on	clarity	of	code	
n  There	are	no	performance	differences	between	function	objects	and	

lambdas	
n  Function	objects	(and	lambdas)	tend	to	be	faster	than	function	arguments	

Stroustrup/Programming	-	Nov'13	 32	



vector	
template<class	T>	class	vector	{	

	T*	elements;	
	//	…	
	using	value_type	=	T;	
	using	iterator	=	???; 	//	the	type	of	an	iterator	is	implementation	defined	
	 	 	 	//	and	it	(usefully)	varies	(e.g.	range	checked	iterators)	
	 	 	 	//	a	vector	iterator	could	be	a	pointer	to	an	element	
	using	const_iterator	=	???;	

	
	iterator	begin(); 	 	//	points	to	first	element	
	const_iterator	begin()	const;		
	iterator	end(); 	 	//	points	to	one	beyond	the	last	element	
	const_iterator	end()	const;	

	
	iterator	erase(iterator	p); 	 	//	remove	element	pointed	to	by	p	
	iterator	insert(iterator	p,	const	T&	v); 	//	insert	a	new	element	v	before	p	

};	
Stroustrup/Programming	-	Nov'13	 33	



insert()	into	vector	
vector<int>::iterator	p	=	v.begin();	++p;	++p;	++p;	
vector<int>::iterator	q	=	p;	++q;	

Stroustrup/Programming	-	Nov'13	 34	

6					

0	 2	1	 3	 4	 5	

v:	

p=v.insert(p,99); 				//	leaves	p	pointing	at	the	inserted	element	

p:	

7					

0	 2	1	 99	 3	 4	

v:	
p:	

5	

q:	

q:	

§  Note:	q	is	invalid	after	the	insert()	
§  Note:	Some	elements	moved;	all	elements	could	have	moved		



erase()	from	vector	

Stroustrup/Programming	-	Nov'13	 35	

p	=	v.erase(p); 	//	leaves	p	pointing	at	the	element	after	the	erased	one	

§  vector	elements	move	when	you	insert()	or	erase()	
§  Iterators	into	a	vector	are	invalidated	by	insert()	and	erase()	

7					

0	 2	1	 99	 3	 4	

v:	
p:	

5	

q:	

6					

0	 2	1	 3	 4	 5	

v:	
p:	 q:	



list	
template<class	T>	class	list	{	

	Link*	elements;	
	//	…	
	using	value_type	=	T;	
	using	iterator	=	???; 	//	the	type	of	an	iterator	is	implementation	defined	
	 	 	 	//	and	it	(usefully)	varies	(e.g.	range	checked	iterators)	
	 	 	 	//	a	list	iterator	could	be	a	pointer	to	a	link	node	
	using	const_iterator	=	???;	

	
	iterator	begin(); 	 	//	points	to	first	element	
	const_iterator	begin()	const;		
	iterator	end(); 	 	//	points	one	beyond	the	last	element	
	const_iterator	end()	const;	

	
	iterator	erase(iterator	p); 	 	//	remove	element	pointed	to	by	p	
	iterator	insert(iterator	p,	const	T&	v); 	//	insert	a	new	element	v	before	p	

};	
Stroustrup/Programming	-	Nov'13	 36	

T	value	
	

Link*	pre	
Link*	post	

Link:	



insert()	into	list	
list<int>::iterator	p	=	v.begin();	++p;	++p;	++p;	
list<int>::iterator	q	=	p;	++q;	

Stroustrup/Programming	-	Nov'13	 37	

7					

0	 2	1	 3	 4	 5	

v:	

v	=	v.insert(p,99); 	//	leaves	p	pointing	at	the	inserted	element	

p:	

99	

6					

0	 2	1	 3	 4	 5	

v:	 p:	 q:	

q:	

§  Note:	q	is	unaffected	
§  Note:	No	elements	moved	around	



erase()	from	list	

Stroustrup/Programming	-	Nov'13	 38	

7					

0	 2	1	 3	 4	 5	

v:	

p	=	v.erase(p); 	//	leaves	p	pointing	at	the	element	after	the	erased	one	

p:	

99	

6					

0	 2	1	 3	 4	 5	

v:	
p:	

§  Note:	list	elements	do	not	move	when	you	insert()	or	erase()	

q:	

q:	



Ways	of	traversing	a	vector	
for(int	i	=	0;	i<v.size();	++i)	 	 	//	why	int?	

…		//	do	something	with	v[i]	
	

for(vector<T>::size_type	i	=	0;	i<v.size();	++i) 	//	longer	but	always	correct	
…		//	do	something	with	v[i]	

	

for(vector<T>::iterator	p	=	v.begin();	p!=v.end();	++p)	
	… 	//	do	something	with	*p	

	
	

n  Know	both	ways	(iterator	and	subscript)	
n  The	subscript	style	is	used	in	essentially	every	language	
n  The	iterator	style	is	used	in	C	(pointers	only)	and	C++	
n  The	iterator	style	is	used	for	standard	library	algorithms	
n  The	subscript	style	doesn’t	work	for	lists	(in	C++	and	in	most	languages)	

n  Use	either	way	for	vectors	
n  There	are	no	fundamental	advantages	of	one	style	over	the	other	
n  But	the	iterator	style	works	for	all	sequences	
n  Prefer		size_type	over	plain	int	

n  pedantic,		but	quiets	compiler	and	prevents	rare	errors	
Stroustrup/Programming	-	Nov'13	 39	



Ways	of	traversing	a	vector	
	

for(vector<T>::iterator	p	=	v.begin();	p!=v.end();	++p)	
	… 	//	do	something	with	*p	

	
for(vector<T>::value_type	x	:	v)	

	… 	//	do	something	with	x	
	
for(auto&	x	:	v)	

	… 	//	do	something	with	x	
	
	
	

n  “Range	for”	
n  Use	for	the	simplest	loops	

n  Every	element	from	begin()	to	end()	
n  Over	one	sequence	
n  When	you	don’t	need	to	look	at	more	than	one	element	at	a	time	
n  When	you	don’t	need	to	know	the	position	of	an	element	

Stroustrup/Programming	-	Nov'13	 40	



Vector	vs.	List	
n  By	default,	use	a	vector	

n  You	need	a	reason	not	to	
n  You	can	“grow”	a	vector	(e.g.,	using	push_back())	
n  You	can	insert()	and	erase()	in	a	vector	
n  Vector	elements	are	compactly	stored	and	contiguous	
n  For	small	vectors	of	small	elements	all	operations	are	fast	

n  compared	to	lists	

n  If	you	don’t	want	elements	to	move,	use	a	list	
n  You	can	“grow”	a	list	(e.g.,	using	push_back()	and	push_front())	
n  You	can	insert()	and	erase()	in	a	list	
n  List	elements	are	separately	allocated	

n  Note	that	there	are	more	containers,	e.g.,	
n  map	
n  unordered_map	

Stroustrup/Programming	-	Nov'13	 41	



Some	useful	standard	headers	
n  <iostream>	 	I/O	streams,	cout,	cin,	…	
n  <fstream> 	 	file	streams	
n  <algorithm> 	sort,	copy,	…	
n  <numeric> 	 	accumulate,	inner_product,	…	
n  <functional> 	function	objects	
n  <string>	
n  <vector>	
n  <map>	
n  <unordered_map>	hash	table	
n  <list>	
n  <set>	

Stroustrup/Programming	-	Nov'13	 42	



Next	lecture	
n  Map,	set,	and	algorithms	

Stroustrup/Programming	-	Nov'13	 43	


