Chapter 20
The STL
(containers, iterators, and algorithms)

Bjarne Stroustrup

WWW.stroustrup.com/Programming

Abstract

This lecture and the next present the STL — the
containers and algorithms part of the C++ standard
library

The STL is an extensible framework dealing with data
in a C++ program.

First, | will present the general ideal, then the
fundamental concepts, and finally examples of
containers and algorithms.

The key notions of sequence and iterator used to tie
data together with algorithms (for general
processing) are also presented.

Stroustrup/Programming - Nov'13

Overview

/ Common tasks and ideals \

Generic programming
Containers, algorithms, and iterators

The simplest algorithm: find()

Parameterization of algorithms
m find_if() and function objects

Sequence containers
\\ m vector and list /
Associative containers

m map, set

Standard algorithms
m copy, sort, ...
m |nput iterators and output iterators

List of useful facilities
m Headers, algorithms, containers, function objects

Stroustrup/Programming - Nov'13

Common tasks

Collect data into containers

Organize data
m For printing
m For fast access

Retrieve data items

m By index (e.g., get the Nth element)
m By value (e.g., get the first element with the value "Chocolate")
m By properties (e.g., get the first elements where “age<64”)

Add data

Remove data

Sorting and searching
Simple numeric operations

Stroustrup/Programming - Nov'13

Observation

We can (already) write programs that are very similar
independent of the data type used
= Using an intisn’ t that different from using a double

= Using a vector<int> isn’ t that different from using a
vector<string>

Stroustrup/Programming - Nov'13

|deals

We' d like to write common programming tasks so that
we don’ t have to re-do the work each time we find a

new way of storing the data or a slightly different way
of interpreting the data

= Finding a value in a vector isn’ t all that different from
finding a value in a list or an array

= Looking for a string ignoring case isn’ t all that different from
looking at a string not ignoring case

= Graphing experimental data with exact values isn’ t all that
different from graphing data with rounded values

= Copying a file isn” t all that different from copying a vector

Stroustrup/Programming - Nov'13 6

|deals (continued)

Code that s

m Easy to read

m Easy to modify
m Regular

m Short

m Fast

Uniform access to data
s Independently of how it is stored
m Independently of its type

Stroustrup/Programming - Nov'13

|deals (continued)

Type-safe access to data
Easy traversal of data

Compact storage of data
Fast

m Retrieval of data
m Addition of data
m Deletion of data

Standard versions of the most common algorithms
m Copy, find, search, sort, sum, ...

Stroustrup/Programming - Nov'13

Examples

Sort a vector of strings

Find an number in a phone book, given a name

Find the highest temperature

Find all values larger than 800

Find the first occurrence of the value 17

Sort the telemetry records by unit number

Sort the telemetry records by time stamp

Find the first value larger than “Petersen” ?

What is the largest amount seen?

Find the first difference between two sequences

Compute the pairwise product of the elements of two sequences
What are the highest temperatures for each day in a month?
What are the top 10 best-sellers?

What’ s the entry for “C++” (say, in Google)?

What' s the sum of the elements?

Stroustrup/Programming - Nov'13

Generic programming

Generalize algorithms
= Sometimes called “lifting an algorithm™

The aim (for the end user) is
m Increased correctness
Through better specification
s Greater range of uses

Possibilities for re-use

m Better performance
Through wider use of tuned libraries
Unnecessarily slow code will eventually be thrown away

Go from the concrete to the more abstract

m The other way most often leads to bloat

Stroustrup/Programming - Nov'13

10

|_|ft| ng exam p|e (concrete algorithms)

double sum(double array[], int n) // one concrete algorithm (doubles in array)
f
double s = 0;
for (inti=0;i<n;++i)s=s+arrayli];
return s;
}
struct Node { Node™* next; int data; };
int sum(Node* first) [/ another concrete algorithm (ints in list)
{
int s =0;
while (first) { // terminates when expression is false or zero

s += first->data;
first = first->next;

}

return s;

Stroustrup/Programming - Nov'13 11

Llftl ng exaim ple (abstract the data structure)

// pseudo-code for a more general version of both algorithms

int sum(data) // somehow parameterize with the data structure
{
ints =0; // initialize
while (not at end) { // loop through all elements
s =s + get value; // compute sum
get next data element;
/
return s; // return result

}

We need three operations (on the data structure):
= not at end
m getvalue

m get next data element : ,
Stroustrup/Programming - Nov'13 12

Lifting example (st version)

// Concrete STL-style code for a more general version of both algorithms

template<class Iter, class T> // Iter should be an Input_iterator

// T should be something we can + and =
T sum(lter first, Iter last, T s) [/ T is the “accumulator type
{

while (first!=last) {
s = s + *first;
++first;

}

return s;

Let the user initialize the accumulator
float a[]={1,2,3,4,5,6,7,8 };
double d = 0;
d = sum(a,a+sizeof(a)/sizeof(*a),d);

Stroustrup/Programming - Nov'13

13

Lifting example

Almost the standard library accumulate

m | simplified a bit for terseness
(see 21.5 for more generality and more details)
Works for

® arrays
m vectors
m lists

= [streams
||

Runs as fast as “hand-crafted” code
= Given decent inlining

The code’ s requirements on its data has become explicit
m We understand the code better

Stroustrup/Programming - Nov'13

14

The STL

Part of the ISO C++ Standard Library

Mostly non-numerical

m Only 4 standard algorithms specifically do computation
Accumulate, inner_product, partial_sum, adjacent_difference

m Handles textual data as well as numeric data
E.g. string

s Deals with organization of code and data
Built-in types, user-defined types, and data structures

Optimizing disk access was among its original uses
m Performance was always a key concern

Stroustrup/Programming - Nov'13 15

The STL

m Designed by Alex Stepanov

= General aim: The most general, most
efficient, most flexible representation
of concepts (ideas, algorithms)
m Represent separate concepts separately in code
s Combine concepts freely wherever meaningful

= General aim to make programming “like math™

= or even Good programming is math”

m works for integers, for floating-point numbers, for
polynomials, for ...

Stroustrup/Programming - Nov'13 16

Basic model

Algorithms
cort. find. search. co e Separation of concerns
' ' s CORY, — Algorithms manipulate

data, but don’ t know
about containers

— Containers store data,
iterators

but don” t know about
algorithms

— Algorithms and
containers interact
through iterators

Containers e Each container has its
vector, list, map, unordered_map, ... ©Wn iterator types

Stroustrup/Programming - Nov'13 17

The STL

An ISO C++ standard framework of about 10
containers and about 60 algorithms connected by
iterators

m Other organizations provide more containers and
algorithms in the style of the STL
Boost.org, Microsoft, SGI, ...

Probably the currently best known and most widely
used example of generic programming

Stroustrup/Programming - Nov'13 18

The STL

If you know the basic concepts and a few examples you
can use the rest

Documentation
m SGI
http://www.sgi.com/tech/stl/ (recommended because of clarity)

m Dinkumware

http://www.dinkumware.com/refxcpp.html (beware of several library
versions)

= Rogue Wave

http://www.roguewave.com/support/docs/sourcepro/stdlibug/
index.html

More accessible and less complete documentation
= Appendix B

Stroustrup/Programming - Nov'13 19

Basic model

A pair of iterators defines a sequence
m The beginning (points to the first element — if any)
m The end (points to the one-beyond-the-last element)

begin: end: S

- g

< > D E— <+—P <—>i

» An iterator is a type that supports the “iterator operations
* ++ Go to next element
 * Getvalue
e == Does this iterator point to the same element as that iterator?

» Some iterators support more operations (e.g. --, +, and [])

Stroustrup/Programming - Nov'13

vector

list
(doubly linked)

set
(a kind of tree)

Containers

(hold sequences in difference ways)

T 0 1 2 3

T~

A
A 4
[HY
A
A 4

s 6
/\
2 7

N

0 1 5

Stroustrup/Programming - Nov'13

21

The simplest algorithm: find()

/;/ Find the first element that equals a value \
begin: template<class In, class T> end: | \
In find(In first, In last, const T& val)

{

while (first!=last && *first != val) ++first;
return first;

}

void f(vector<int>& v, int x) [/ find an int in a vector

{

vector<int>::iterator p = find(v.begin(),v.end(),x);
if (p!=v.end()) { /* we found x */ }
// ..

'

We can ignore (“abstract away) the differences between
containers Stroustrup/Programming - Nov'13

find()
generic for both element type and container type

void f(vector<int>& v, int x) // works for vector of ints

{

vector<int>::iterator p = find(v.begin(),v.end(),x);
if (p!=v.end()) { /* we found x */ }

/] ..
}
void f(list<string>& v, string x) [/ works for list of strings
f
list<string>::iterator p = find(v.begin(),v.end(),x);
if (p!=v.end()) { /* we found x */ }
// ...
}
void f(set<double>& v, double x) // works for set of doubles
{
set<double>::iterator p = find(v.begin(),v.end(),x);
if (p!=v.end()) { /* we found x */}
// ...
}

Stroustrup/Programming - Nov'13

Algorithms and iterators

An iterator points to (refers to, denotes) an element of a
sequence

The end of the sequence is “one past the last element”
= not the last element”
= That’ s necessary to elegantly represent an empty sequence

s One-past-the-last-element isn’ t an element
You can compare an iterator pointing to it
You can’ t dereference it (read its value)

Returning the end of the sequence is the standard idiom for

“not found” or “unsuccessful” An empty sequence:
some .
iterator: N the end: N begln: end:
0 1 2 3 | \‘/

Stroustrup/Programming - Nov'13 24

Simple algorithm: find_if()

Find the first element that matches a criterion
(predicate)

m Here, a predicate takes one argument and returns a bool

template<class In, class Pred>
In find_if(In first, In last, Pred pred)

{
while (first!=last && !pred(*first)) ++first; A predicate
return first;

}

void f(vector<int>& v)

{

vector<int>::iterator p = find_if(v.begin(),v.end,0dd());
if (p!=v.end()) { /* we found an odd number */ }
// ...

}

Stroustrup/Programming - Nov'13 25

Predicates

A predicate (of one argument) is a function or a function object
that takes an argument and returns a bool

For example
= A function

bool odd(int i) { return i%2; } // % is the remainder (modulo) operator
odd(7); [/ call odd: is 7 odd?

m A function object
struct Odd {
bool operator()(int i) const { return i%2; }

b
Odd odd; [/ make an object odd of type Odd
odd(7); // call odd: is 7 odd?

Stroustrup/Programming - Nov'13 26

Function objects

A concrete example using state

template<class T> struct Less_than {
T val; [/ value to compare with
Less_than(T& x) :val(x) { }
bool operator()(const T& x) const { return x < val; }

i

[/ find x<43 in vector<int> :
p=find_if(v.begin(), v.end(), Less_than(43));

[/ find x<"perfection" in list<string>:

g=find_if(ls.begin(), Is.end(), Less_than("perfection"));
Stroustrup/Programming - Nov'13 27

Function objects

A very efficient technique
= inlining very easy
and effective with current compilers

m Faster than equivalent function

And sometimes you can’ t write an equivalent function
The main method of policy parameterization in the STL
Key to emulating functional programming techniques in C++

Stroustrup/Programming - Nov'13 28

Policy parameterization

Whenever you have a useful algorithm, you eventually want
to parameterize it by a “policy .

m For example, we need to parameterize sort by the comparison criteria

struct Record {

string name; // standard string for ease of use
char addr[24]; // old C-style string to match database layout
/] ..

g

vector<Record> vr;

/] ..

sort(vr.begin(), vr.end(), Cmp_by_name()); // sort by name
sort(vr.begin(), vr.end(), Cmp_by_addr()); // sort by addr

Stroustrup/Programming - Nov'13 29

Comparisons

// Different comparisons for Rec objects:

struct Cmp_by_name {
bool operator()(const Rec& a, const Rec& b) const
{ return a.name < b.name; } // look at the name field of Rec

g

struct Cmp_by_addr {
bool operator()(const Rec& a, const Rec& b) const
{ return 0 < strncmp(a.addr, b.addr, 24); } // correct?

g

// note how the comparison function objects are used to hide ugly
[/ and error-prone code

Stroustrup/Programming - Nov'13

30

Policy parameterization

Whenever you have a useful algorithm, you eventually want
to parameterize it by a “policy .

m For example, we need to parameterize sort by the comparison criteria

vector<Record> vr;

/[l ...

sort(vr.begin(), vr.end(),
[] (const Rec& a, const Rec& b)
{ return a.name < b.name; } // sort by name

);

sort(vr.begin(), vr.end(),
[] (const Rec& a, const Rec& b)
{ return 0 < strncmp(a.addr, b.addr, 24); } // sort by addr

);

Stroustrup/Programming - Nov'13 31

Policy parameterization

Use a named object as argument
s |f you want to do something complicated
m |f you feel the need for a comment
= |f you want to do the same in several places

Use a lambda expression as argument
= [f what you want is short and obvious

Choose based on clarity of code

m There are no performance differences between function objects and
lambdas

m Function objects (and lambdas) tend to be faster than function arguments

Stroustrup/Programming - Nov'13 32

vector

template<class T> class vector {

g

T* elements;
[/ ...
using value_type =T;
using iterator = ???; [/ the type of an iterator is implementation defined
// and it (usefully) varies (e.qg. range checked iterators)
// a vector iterator could be a pointer to an element
using const_iterator = ???;

iterator begin(); // points to first element
const_iterator begin() const;
iterator end(); // points to one beyond the last element

const_iterator end() const;

iterator erase(iterator p); [/ remove element pointed to by p
iterator insert(iterator p, const T& v); // insert a new element v before p

Stroustrup/Programming - Nov'13 33

insert() into vector

vector<int>::iterator p = v.begin(); ++p; ++p; ++p;

vector<int>::iterator q = p; ++q;

V:

p=v.insert(p,99);

&\

/

3

V: 7\

Note: q is invalid after the insert()

/

5
o
-
-
o
p
o
o
o
.
o
o
>
»
o
=
o
z
=
=
2
2
o
=
-
o
o
5
o
o
y'ad

// leaves p pointing at the inserted element

0

1

2

99

3

Note: Some elements moved; all elements could have moved
Stroustrup/Programming - Nov'13

34

erase() from vector

V: 7\

/

/

/”
&«

a

1

2

99

3

4

5

p = v.erase(p); [/ leaves p pointing at the element after the erased one

V: 6\

/

-
_-
V4

"

3

4

= vector elements move when you insert() or erase()
= |[terators into a vector are invalidated by insert() and erase()

Stroustrup/Programming - Nov'13 35

template<class T> class list { Link* post

g

Iist Link: T value

Link* pre

Link* elements;
// ...
using value_type =T;
using iterator = ???; [/ the type of an iterator is implementation defined
// and it (usefully) varies (e.g. range checked iterators)
// a list iterator could be a pointer to a link node
using const_iterator = ???;

iterator begin(); // points to first element
const_iterator begin() const;
iterator end(); [/ points one beyond the last element

const_iterator end() const;

iterator erase(iterator p); [/ remove element pointed to by p
iterator insert(iterator p, const T& v); // insert a new element v before p

Stroustrup/Programming - Nov'13 36

V: 6\

v = v.insert(p,99);

V: 7\

insert() into list

list<int>::iterator p = v.begin(); ++p; ++p; ++p;
list<int>::iterator q = p; ++q;

o}

A

A 4
[N

g:

\

N

A

A 4

2

<
l

»
L

3

<
l

> 4

A
v
Ul

// leaves p pointing at the inserted element

p:

A

= Note: g is unaffected

= Note: No elements moved around
Stroustrup/Programming - Nov'13

A 4

<
l

»
L

g:

AN

N

9

/

A

A\ 4
I
A
A\ 4
Ul

37

erase() from list

g.:
V: 7\ - \\
O<>1<>x+/3< » 4 «—> §
99
p = v.erase(p); // leaves p pointing at the element after the erased one
SHE N 9 [N
v 6\ \ \
0 «— 1 [+ 2 » 3 > 4 ~— 5

= Note: list elements do not move when you insert() or erase()

Stroustrup/Programming - Nov'13 38

Ways of traversing a vector

for(int i = 0; i<v.size(); ++i) [/ why int?
... [/ do something with v[i]

for(vector<T>::size_type i = 0; i<v.size(); ++i) [/ longer but always correct
... [/ do something with v[i]

for(vector<T>::iterator p = v.begin(); p!=v.end(); ++p)
// do something with *p

Know both ways (iterator and subscript)

The subscript style is used in essentially every language

The iterator style is used in C (pointers only) and C++

The iterator style is used for standard library algorithms

The subscript style doesn’t work for lists (in C++ and in most languages)

Use either way for vectors
m There are no fundamental advantages of one style over the other
m But the iterator style works for all sequences

m Prefer size_type over plain int

pedantic, but quiets compiler and prevents rare errors
Stroustrup/Programming - Nov'13 39

Ways of traversing a vector

for(vector<T>::iterator p = v.begin(); p!=v.end(); ++p)
// do something with *p

for(vector<T>::value_type x : v)
// do something with x

for(auto& x : v)
// do something with x

“Range for”

m Use for the simplest loops
Every element from begin() to end()

m Over one sequence
m When you don’t need to look at more than one element at a time

m When you don’t need to know the position of an element

Stroustrup/Programming - Nov'13

40

Vector vs. List

By default, use a vector
®= You need a reason not to
m You can “grow” a vector (e.g., using push_back())
= You can insert() and erase() in a vector
m Vector elements are compactly stored and contiguous

m For small vectors of small elements all operations are fast
compared to lists

If you don’ t want elements to move, use a list
= You can “grow” a list (e.g., using push_back() and push_front())
= You can insert() and erase() in a list
m List elements are separately allocated

Note that there are more containers, e.g.,

E Map

m unordered_map
Stroustrup/Programming - Nov'13 41

Some useful standard headers

<iostream> |/O streams, cout, cin, ...
<fstream> file streams
<algorithm> sort, copy, ...

<numeric> accumulate, inner_product, ...
<functional> function objects
<string>

<vector>

<map>

<unordered_map> hash table

<list>

<set>

Stroustrup/Programming - Nov'13

42

Next lecture

Map, set, and algorithms

Stroustrup/Programming - Nov'13

43

