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Overview

• Vector revisited: How are they implemented?
• Pointers and free store
• Destructors
• Initialization
• Copy and move
• Arrays
• Array and pointer problems
• Changing size
• Templates
• Range checking and exceptions
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Reminder

Why look at the vector implementation?
• To see how the standard library vector really works
• To introduce basic concepts and language features

4 Free store (heap)
• Copy and move
• Dynamically growing data structures

• To see how to directly deal with memory
• To see the techniques and concepts you need to understand C, including the dangerous ones
• To demonstrate class design techniques
• To see examples of “neat” code and good design
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vector

A very simplified vector of doubles (as far as we got so far):

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
vector(int s) :sz{s}, elem{new double[s]} { } // constructor

// new allocates memory
~vector () { delete[ ] elem; } // destructor

// delete [] deallocates memory

double get(int n) { return elem[n]; } // access: read
void set(int n, double v) { elem[n]=v; } // access: write

int size() const { return sz; } // the number of elements
};
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Initialization: Initializer Lists
We would like simple, general, and flexible initialization. So we provide suitable constructors:
class vector {
public:

vector(int s); // constructor (s is the element count)

vector(std:: initializer_list <double > lst); // initializer -list constructor
};

vector v1 (20); // 20 elements , each initialized to 0
vector v2 {1,2,3,4,5}; // 5 elements: 1,2,3,4,5

vector :: vector(int s) // constructor (s is the element count)
:sz{s}, elem{new double[s]} { }

{
for (int i=0; i<sz; ++i) elem[i]=0;

}

vector :: vector(std:: initializer_list <double > lst) // initializer -list constructor
:sz{lst.size()}, elem{new double[sz]} { }

{
std::copy(lst.begin(),lst.end(),elem); // copy lst to elem

}
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Initialization

If we initialize a vector by 17 is it
• 17 elements (with value 0)?
• 1 element with value 17?

By convention use
• () for number of elements
• {} for elements

For example

vector v1 (17); // 17 elements , each with the value 0
vector v2 {17}; // 1 element with value 17
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Initialization: Explicit Constructors

A problem:
• A constructor taking a single argument defines a conversion from the argument type to the
constructor’s type

• Our vector had vector::vector(int), so

vector v1 = 7; // v1 has 7 elements , each with the value 0

void do_something(vector v)
do_something (7); // call do_something () with a vector of 7 elements

This is very error-prone.
• Unless, of course, that’s what we wanted
• For example

complex <double > d = 2.3; // convert from double to complex <double >
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Initialization: Explicit Constructors

A solution:
Declare constructors taking a single argument explicit unless you want a conversion from the
argument type to the constructor’s type

class vector {
// ...

public:
explicit vector(int s); // constructor (s is the element count)
// ...

};

vector v1 = 7; // error: no implicit conversion from int

void do_something(vector v);
do_something (7); // error: no implicit conversion from int
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A Problem

Copy doesn’t work as we would have hoped (expected?)

void f(int n)
{

vector v(n); // define a vector
vector v2 = v; // what happens here?

// what would we like to happen?
vector v3;
v3 = v; // what happens here?

// what would we like to happen?
// ...

}

• Ideally: v2 and v3 become copies of v (that is, = makes copies) and all memory is returned to
the free store upon exit from f()

• That’s what the standard vector does,
but it’s not what happens for our still-too-simple vector
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Naïve Copy Initialization (the Default)
By default copy means copy the data members
void f(int n)
{

vector v1(n);
vector v2 = v1; // initialization:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)
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Naïve Copy Assignment (the Default)
void f(int n)
{

vector v1(n);
vector v2(4);
v2 = v1; // assignment:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

2nd

1st

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)

memory leak: v2’s elements are not deleted
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Copy Constructor (Initialization)

class vector {
int sz;
double* elem;

public:
vector(const vector &) ; // copy constructor: define copy (below)
// ...

};

vector :: vector(const vector& a)
:sz{a.sz}, elem{new double[a.sz]}
// allocate space for elements , then initialize them (by copying)

{
for (int i = 0; i<sz; ++i) elem[i] = a.elem[i];

}
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Copy with Copy Constructor

void f(int n)
{

vector v1(n);
vector v2 = v1; // copy using the copy constructor

// the for loop copies each value from v1 into v2
}

3v1:

3v2:

The destructor correctly deletes all elements
(once only for each vector)
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Copy Assignment

class vector {
int sz;
double* elem;

public:
vector& operator =(const vector& a); // copy assignment: define copy (next slide)
// ...

};

x=a;

8 4 2

1 2 3 4

8 4 2

3a:

3�4x: 1st
2nd

Memory leak? (no)

Operator = must copy a’s elements
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Copy Assignment (Implementation)

Like copy constructor, but we must deal with old elements.
Make a copy of a then replace the current sz and elem with a’s

vector& vector :: operator =(const vector& a)
{

double* p = new double[a.sz]; // allocate new space
for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
delete[ ] elem; // deallocate old space
sz = a.sz; // set new size
elem = p; // set new elements
return *this; // return a self -reference

}

• The identifier this is a pointer that points to the object for which the member function was
called (see par. 17.10).

• It is immutable
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Copy with Copy Assignment (Implementation)

void f(int n)
{

vector v1 {6 ,24 ,42};
vector v2(4);
v2 = v1; // assignment

}

6 24 42

1 2 3 4

6 24 42

3v1:

3�4v2:
1st
2nd

delete[] d by = in
previous slide. No
memory leak

Operator = must copy a’s elements
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Copy Terminology

Shallow copy: copy only a pointer so that the two pointers
now refer to the same object

• What pointers and references do
x: Copy of x:

y:

Deep copy: copy what the pointer points to so that the
two pointers now each refer to a distinct object

• What vector, string, etc. do
• Requires copy constructors and copy assignments for
container classes

• Must copy “all the way down” if there are more levels
in the object

x:

y:

Copy of x:

Copy of y:
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Deep and Shallow Copy

vector <int > v1 {2,4};
vector <int > v2 = v1; // deep copy (v2 gets its own copy of v1’s elements)
v2[0] = 3; // v1[0] is still 2

2v1:

2 4

2v2:

�23 4

int b = 9;
int& r1 = b;
int& r2 = r1; // shallow copy (r2 refers to the same variable as r1)
r2 = 7; // b becomes 7

�97b:r1:r2:
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Move

Consider

vector fill(istream& is)
{

vector res;
for (double x; is>>x; ) res.push_back(x);
return res; // returning a copy of res could be expensive

// returning a copy of res would be silly!
}

void use()
{

vector vec = fill(cin);
// ... use vec ...

}
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Move: What We Want

Before return res in fill():

3res:

uninitializedvec:

After return res; (after vector vec = fill(cin); )

nullptr0res:

3vec:
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Move Constructor and Move Assignment

Define move operations to “steal” representation

class vector {
int sz;
double* elem;

public:
vector(vector &&); // move constructor: "steal" the elements

vector& operator =( vector &&); // move assignment:
// destroy target and "steal" the elements

// ...
};

&& indicates move
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Move Constructor and Assignment (Implementation)

move constructor: “steal” the elements

vector :: vector(vector && a) // move constructor
:sz{a.sz}, elem{a.elem} // copy a’s elem and sz

{
a.sz = 0; // make a the empty vector
a.elem = nullptr;

}

move assignment: destroy target and “steal” the elements

vector& vector :: operator =( vector && a) // move assignment
{

delete [] elem; // deallocate old space
elem = a.elem; // copy a’s elem and sz
sz = a.sz;
a.elem = nullptr; // make a the empty vector
a.sz = 0;
return *this; // return a self -reference (see par. 17.10)

}
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Essential Operations

• Default constructor
• Constructors from one or more arguments

• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

If you define one of these,
define them all
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Arrays

Arrays don’t have to be on the free store

char ac[7]; // global array - "lives" forever - in static storage
int max = 100;
int ai[max];

int f(int n)
{

char lc[20]; // local array - "lives" until the end of scope - on stack
int li[60];
double lx[n]; // error: a local array size must be known at compile time

// vector <double > lx(n); would work
// ...

}

29



Address of &

You can get a pointer to any object
not just to objects on the free store

int a;
char ac[20];

void f(int n)
{

int b;
int* p = &b; // pointer to individual variable
p = &a; // now point to a different variable
char* pc = ac; // the name of an array names a pointer to its first element
pc = &ac[0]; // equivalent to pc = ac
pc = &ac[n]; // pointer to ac’s nth element (starting at 0th)

// warning: range is not checked
// ...

}
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Arrays Convert to Pointers
void f(int pi[ ]) // equivalent to void f(int* pi)
{

int a[ ] = { 1, 2, 3, 4 };
int b[ ] = a; // error: copy isn’t defined for arrays
b = pi; // error: copy isn’t defined for arrays. Think of a

// (non -argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi now points to a’s first element

// Is this a memory leak? (maybe)
int* p = a; // p points to the first element of a
int* q = pi; // q points to the first element of a

}

1 2 3 4 :a

p:

q:

pi: 1st
2nd

Memory leak?
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Arrays don’t Know Their Size

Warning: very dangerous code, for illustration only: never “hope” that sizes will always be correct

void f(char pc[ ], int n) // equivalent to void f(char* pc , int n)
{

char buf1 [200]; // you can’t say ‘char buf1[n];’ n is a variable
strcpy(buf1 ,pc); // copy characters from pc into buf1

// strcpy terminates when a ’\0’ character is found
// hope that pc holds less than 200 characters

// alternative that hedges against pc holding > 200 chars
strncpy(buf1 ,pc ,200); // copy 200 characters from pc to buf1

// padded if necessary , but final ’\0’ not guaranteed
}

Similarly:

void f(int pi[ ], int n) // equivalent to void f(int* pi, int n)
{

int buf2 [300]; // you can’t say ‘int buf2[n];’ n is a variable
if (300 < n) error("not enough space");
for (int i=0; i<n; ++i) buf2[i] = pi[i]; // hope that pi really has space for

// n ints; it might have less
}
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Be Careful with Arrays and Pointers

Watch out on dangling pointers (pointers to deleted memory)

char* f()
{

char ch[20];
char* p = &ch[90];
// ...
*p = ’a’; // we don’t know what this will overwrite
char* q; // forgot to initialize
*q = ’b’; // we don’t know what this will overwrite
return &ch[10]; // oops: ch disappears upon return from f()

// (an infamous dangling pointer)
}

void g()
{

char* pp = f();
// ...
*pp = ’c’; // we don’t know what this will overwrite
// (f’s ch is gone for good after the return from f)

}
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Why Bother with Arrays?

• It’s all that C has
• In particular, C does not have vector
• There is a lot of C code “out there”
• There is a lot of C++ code in C style “out there”
• You’ll eventually encounter code full of arrays and pointers

• They represent primitive memory in C++ programs
We need them (mostly on free store allocated by new) to implement better container types

• Avoid arrays whenever you can
• They are the largest single source of bugs in C and (unnecessarily) in C++ programs
• They are among the largest sources of security violations, usually (avoidable) buffer overflows
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Recap: Types of Memory

vector glob (10); // global vector - ‘‘lives ’’ forever

vector* some_fct(int n)
{

vector v(n); // local vector - ‘‘lives ’’ until the end of scope
vector* p = new vector(n); // free -store vector - ‘‘lives ’’ until we delete it
// ...
return p;

}

void f()
{

vector* pp = some_fct (17);
// ...
delete pp; // deallocate the free -store vector allocated in some_fct ()

}

it’s easy to forget to delete free-store allocated objects
so avoid new/delete when you can (and that’s most of the time)
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Vector: Primitive Access
A very simplified vector of doubles:
vector v(10);

Pretty ugly access:
for (int i=0; i<v.size (); ++i) {

v.set(i,i);
cout << v.get(i);

}

We’re used to this way of accessing:
for (int i=0; i<v.size (); ++i) {

v[i]=i;
cout << v[i];

}

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

elem:

10

sz:
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Vector: Pointers for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double* operator[ ](int n) { return &elem[n]; } // access: return pointer

};

vector v(10);

Access via pointers:

for (int i=0; i<v.size (); ++i) {
*v[i] = i; // means *(v[i]), that is, return a pointer to

// the ith element , and dereference it
cout << *v[i];

}

It works, but still too ugly.
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Vector: References for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
tdouble* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double& operator[ ](int n) { return elem[n]; } // access: return reference

};

vector v(10);

Access via references:

for (int i=0; i<v.size (); ++i) {
v[i] = i; // v[i] returns a reference to the ith element
cout << v[i];

}

It works and it looks right!!
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Pointer and Reference
You can think of a reference as an automatically dereferenced immutable pointer, or as an
alternative name (alias) for an object

• Assignment to a pointer changes the pointer’s value

• Assignment to a reference changes the object referred to

• You cannot make a reference refer to a different object
int a = 10;
int* p = &a; // you need & to get a pointer
*p = 7; // assign to a through p

// you need ’*’ (or ’[ ]’) to get to what a pointer points to
int x1 = *p; // read ’a’ through ’p’

int& r = a; // ’r’ is an alias for ’a’
r = 9; // assign to ’a’ through ’r’
int x2 = r; // read ’a’ through ’r’

p = &x1; // you can make a pointer point to a different object
r = &x1; // error: you can’t change the value of a ’r’
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