
DM560

Introduction to Programming in C++

Vector and Free Store
(Vectors and Arrays)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

2

Overview

• Vector revisited: How are they implemented?
• Pointers and free store
• Destructors
• Initialization
• Copy and move
• Arrays
• Array and pointer problems
• Changing size
• Templates
• Range checking and exceptions

3

Reminder

Why look at the vector implementation?
• To see how the standard library vector really works
• To introduce basic concepts and language features

4 Free store (heap)
• Copy and move
• Dynamically growing data structures

• To see how to directly deal with memory
• To see the techniques and concepts you need to understand C, including the dangerous ones
• To demonstrate class design techniques
• To see examples of “neat” code and good design

4

vector

A very simplified vector of doubles (as far as we got so far):

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
vector(int s) :sz{s}, elem{new double[s]} { } // constructor

// new allocates memory
~vector () { delete[] elem; } // destructor

// delete [] deallocates memory

double get(int n) { return elem[n]; } // access: read
void set(int n, double v) { elem[n]=v; } // access: write

int size() const { return sz; } // the number of elements
};

5

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

6

Initialization: Initializer Lists
We would like simple, general, and flexible initialization. So we provide suitable constructors:
class vector {
public:

vector(int s); // constructor (s is the element count)

vector(std:: initializer_list <double > lst); // initializer -list constructor
};

vector v1 (20); // 20 elements , each initialized to 0
vector v2 {1,2,3,4,5}; // 5 elements: 1,2,3,4,5

vector :: vector(int s) // constructor (s is the element count)
:sz{s}, elem{new double[s]} { }

{
for (int i=0; i<sz; ++i) elem[i]=0;

}

vector :: vector(std:: initializer_list <double > lst) // initializer -list constructor
:sz{lst.size()}, elem{new double[sz]} { }

{
std::copy(lst.begin(),lst.end(),elem); // copy lst to elem

}

7

Initialization

If we initialize a vector by 17 is it
• 17 elements (with value 0)?
• 1 element with value 17?

By convention use
• () for number of elements
• {} for elements

For example

vector v1 (17); // 17 elements , each with the value 0
vector v2 {17}; // 1 element with value 17

8

Initialization: Explicit Constructors

A problem:
• A constructor taking a single argument defines a conversion from the argument type to the
constructor’s type

• Our vector had vector::vector(int), so

vector v1 = 7; // v1 has 7 elements , each with the value 0

void do_something(vector v)
do_something (7); // call do_something () with a vector of 7 elements

This is very error-prone.
• Unless, of course, that’s what we wanted
• For example

complex <double > d = 2.3; // convert from double to complex <double >

9

Initialization: Explicit Constructors

A solution:
Declare constructors taking a single argument explicit unless you want a conversion from the
argument type to the constructor’s type

class vector {
// ...

public:
explicit vector(int s); // constructor (s is the element count)
// ...

};

vector v1 = 7; // error: no implicit conversion from int

void do_something(vector v);
do_something (7); // error: no implicit conversion from int

10

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

11

A Problem

Copy doesn’t work as we would have hoped (expected?)

void f(int n)
{

vector v(n); // define a vector
vector v2 = v; // what happens here?

// what would we like to happen?
vector v3;
v3 = v; // what happens here?

// what would we like to happen?
// ...

}

• Ideally: v2 and v3 become copies of v (that is, = makes copies) and all memory is returned to
the free store upon exit from f()

• That’s what the standard vector does,
but it’s not what happens for our still-too-simple vector

12

Naïve Copy Initialization (the Default)
By default copy means copy the data members
void f(int n)
{

vector v1(n);
vector v2 = v1; // initialization:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)

13

Naïve Copy Assignment (the Default)
void f(int n)
{

vector v1(n);
vector v2(4);
v2 = v1; // assignment:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

2nd

1st

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)

memory leak: v2’s elements are not deleted
14

Copy Constructor (Initialization)

class vector {
int sz;
double* elem;

public:
vector(const vector &) ; // copy constructor: define copy (below)
// ...

};

vector :: vector(const vector& a)
:sz{a.sz}, elem{new double[a.sz]}
// allocate space for elements , then initialize them (by copying)

{
for (int i = 0; i<sz; ++i) elem[i] = a.elem[i];

}

15

Copy with Copy Constructor

void f(int n)
{

vector v1(n);
vector v2 = v1; // copy using the copy constructor

// the for loop copies each value from v1 into v2
}

3v1:

3v2:

The destructor correctly deletes all elements
(once only for each vector)

16

Copy Assignment

class vector {
int sz;
double* elem;

public:
vector& operator =(const vector& a); // copy assignment: define copy (next slide)
// ...

};

x=a;

8 4 2

1 2 3 4

8 4 2

3a:

3�4x: 1st
2nd

Memory leak? (no)

Operator = must copy a’s elements

17

Copy Assignment (Implementation)

Like copy constructor, but we must deal with old elements.
Make a copy of a then replace the current sz and elem with a’s

vector& vector :: operator =(const vector& a)
{

double* p = new double[a.sz]; // allocate new space
for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
delete[] elem; // deallocate old space
sz = a.sz; // set new size
elem = p; // set new elements
return *this; // return a self -reference

}

• The identifier this is a pointer that points to the object for which the member function was
called (see par. 17.10).

• It is immutable

18

Copy with Copy Assignment (Implementation)

void f(int n)
{

vector v1 {6 ,24 ,42};
vector v2(4);
v2 = v1; // assignment

}

6 24 42

1 2 3 4

6 24 42

3v1:

3�4v2:
1st
2nd

delete[] d by = in
previous slide. No
memory leak

Operator = must copy a’s elements

19

Copy Terminology

Shallow copy: copy only a pointer so that the two pointers
now refer to the same object

• What pointers and references do
x: Copy of x:

y:

Deep copy: copy what the pointer points to so that the
two pointers now each refer to a distinct object

• What vector, string, etc. do
• Requires copy constructors and copy assignments for
container classes

• Must copy “all the way down” if there are more levels
in the object

x:

y:

Copy of x:

Copy of y:

20

Deep and Shallow Copy

vector <int > v1 {2,4};
vector <int > v2 = v1; // deep copy (v2 gets its own copy of v1’s elements)
v2[0] = 3; // v1[0] is still 2

2v1:

2 4

2v2:

�23 4

int b = 9;
int& r1 = b;
int& r2 = r1; // shallow copy (r2 refers to the same variable as r1)
r2 = 7; // b becomes 7

�97b:r1:r2:

21

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

22

Move

Consider

vector fill(istream& is)
{

vector res;
for (double x; is>>x;) res.push_back(x);
return res; // returning a copy of res could be expensive

// returning a copy of res would be silly!
}

void use()
{

vector vec = fill(cin);
// ... use vec ...

}

23

Move: What We Want

Before return res in fill():

3res:

uninitializedvec:

After return res; (after vector vec = fill(cin);)

nullptr0res:

3vec:

24

Move Constructor and Move Assignment

Define move operations to “steal” representation

class vector {
int sz;
double* elem;

public:
vector(vector &&); // move constructor: "steal" the elements

vector& operator =(vector &&); // move assignment:
// destroy target and "steal" the elements

// ...
};

&& indicates move

25

Move Constructor and Assignment (Implementation)

move constructor: “steal” the elements

vector :: vector(vector && a) // move constructor
:sz{a.sz}, elem{a.elem} // copy a’s elem and sz

{
a.sz = 0; // make a the empty vector
a.elem = nullptr;

}

move assignment: destroy target and “steal” the elements

vector& vector :: operator =(vector && a) // move assignment
{

delete [] elem; // deallocate old space
elem = a.elem; // copy a’s elem and sz
sz = a.sz;
a.elem = nullptr; // make a the empty vector
a.sz = 0;
return *this; // return a self -reference (see par. 17.10)

}

26

Essential Operations

• Default constructor
• Constructors from one or more arguments

• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

If you define one of these,
define them all

27

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

28

Arrays

Arrays don’t have to be on the free store

char ac[7]; // global array - "lives" forever - in static storage
int max = 100;
int ai[max];

int f(int n)
{

char lc[20]; // local array - "lives" until the end of scope - on stack
int li[60];
double lx[n]; // error: a local array size must be known at compile time

// vector <double > lx(n); would work
// ...

}

29

Address of &

You can get a pointer to any object
not just to objects on the free store

int a;
char ac[20];

void f(int n)
{

int b;
int* p = &b; // pointer to individual variable
p = &a; // now point to a different variable
char* pc = ac; // the name of an array names a pointer to its first element
pc = &ac[0]; // equivalent to pc = ac
pc = &ac[n]; // pointer to ac’s nth element (starting at 0th)

// warning: range is not checked
// ...

}

30

Arrays Convert to Pointers
void f(int pi[]) // equivalent to void f(int* pi)
{

int a[] = { 1, 2, 3, 4 };
int b[] = a; // error: copy isn’t defined for arrays
b = pi; // error: copy isn’t defined for arrays. Think of a

// (non -argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi now points to a’s first element

// Is this a memory leak? (maybe)
int* p = a; // p points to the first element of a
int* q = pi; // q points to the first element of a

}

1 2 3 4 :a

p:

q:

pi: 1st
2nd

Memory leak?

31

Arrays don’t Know Their Size

Warning: very dangerous code, for illustration only: never “hope” that sizes will always be correct

void f(char pc[], int n) // equivalent to void f(char* pc , int n)
{

char buf1 [200]; // you can’t say ‘char buf1[n];’ n is a variable
strcpy(buf1 ,pc); // copy characters from pc into buf1

// strcpy terminates when a ’\0’ character is found
// hope that pc holds less than 200 characters

// alternative that hedges against pc holding > 200 chars
strncpy(buf1 ,pc ,200); // copy 200 characters from pc to buf1

// padded if necessary , but final ’\0’ not guaranteed
}

Similarly:

void f(int pi[], int n) // equivalent to void f(int* pi, int n)
{

int buf2 [300]; // you can’t say ‘int buf2[n];’ n is a variable
if (300 < n) error("not enough space");
for (int i=0; i<n; ++i) buf2[i] = pi[i]; // hope that pi really has space for

// n ints; it might have less
}

32

Be Careful with Arrays and Pointers

Watch out on dangling pointers (pointers to deleted memory)

char* f()
{

char ch[20];
char* p = &ch[90];
// ...
*p = ’a’; // we don’t know what this will overwrite
char* q; // forgot to initialize
*q = ’b’; // we don’t know what this will overwrite
return &ch[10]; // oops: ch disappears upon return from f()

// (an infamous dangling pointer)
}

void g()
{

char* pp = f();
// ...
*pp = ’c’; // we don’t know what this will overwrite
// (f’s ch is gone for good after the return from f)

}

33

Why Bother with Arrays?

• It’s all that C has
• In particular, C does not have vector
• There is a lot of C code “out there”
• There is a lot of C++ code in C style “out there”
• You’ll eventually encounter code full of arrays and pointers

• They represent primitive memory in C++ programs
We need them (mostly on free store allocated by new) to implement better container types

• Avoid arrays whenever you can
• They are the largest single source of bugs in C and (unnecessarily) in C++ programs
• They are among the largest sources of security violations, usually (avoidable) buffer overflows

34

Recap: Types of Memory

vector glob (10); // global vector - ‘‘lives ’’ forever

vector* some_fct(int n)
{

vector v(n); // local vector - ‘‘lives ’’ until the end of scope
vector* p = new vector(n); // free -store vector - ‘‘lives ’’ until we delete it
// ...
return p;

}

void f()
{

vector* pp = some_fct (17);
// ...
delete pp; // deallocate the free -store vector allocated in some_fct ()

}

it’s easy to forget to delete free-store allocated objects
so avoid new/delete when you can (and that’s most of the time)

35

Vector: Primitive Access
A very simplified vector of doubles:
vector v(10);

Pretty ugly access:
for (int i=0; i<v.size (); ++i) {

v.set(i,i);
cout << v.get(i);

}

We’re used to this way of accessing:
for (int i=0; i<v.size (); ++i) {

v[i]=i;
cout << v[i];

}

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

elem:

10

sz:

36

Vector: Pointers for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double* operator[](int n) { return &elem[n]; } // access: return pointer

};

vector v(10);

Access via pointers:

for (int i=0; i<v.size (); ++i) {
*v[i] = i; // means *(v[i]), that is, return a pointer to

// the ith element , and dereference it
cout << *v[i];

}

It works, but still too ugly.

37

Vector: References for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
tdouble* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double& operator[](int n) { return elem[n]; } // access: return reference

};

vector v(10);

Access via references:

for (int i=0; i<v.size (); ++i) {
v[i] = i; // v[i] returns a reference to the ith element
cout << v[i];

}

It works and it looks right!!

38

Pointer and Reference
You can think of a reference as an automatically dereferenced immutable pointer, or as an
alternative name (alias) for an object

• Assignment to a pointer changes the pointer’s value

• Assignment to a reference changes the object referred to

• You cannot make a reference refer to a different object
int a = 10;
int* p = &a; // you need & to get a pointer
*p = 7; // assign to a through p

// you need ’*’ (or ’[]’) to get to what a pointer points to
int x1 = *p; // read ’a’ through ’p’

int& r = a; // ’r’ is an alias for ’a’
r = 9; // assign to ’a’ through ’r’
int x2 = r; // read ’a’ through ’r’

p = &x1; // you can make a pointer point to a different object
r = &x1; // error: you can’t change the value of a ’r’

39

Summary

1. Initialization

2. Copy

3. Move

4. Arrays

40

	Initialization
	Copy
	Move
	Arrays

