
DM560

Introduction to Programming in C++

Developing a Program

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Writing a ProgramOutline

1. Writing a Program

2

Writing a ProgramOutline

1. Writing a Program

3

Writing a ProgramOverview

We focus on the task of designing a program through the example of a simple “desk calculator.”

• Some thoughts on software development

• The idea of a calculator

• Using a grammar

• Expression evaluation

• Program organization

4

Writing a ProgramDeveloping a Program

• Analysis

• Refine our understanding of the problem
• Think of the final use of our program

• Design
• Create an overall structure for the program

• Implementation
• Write code
• Debug
• Test

• Go through these stages repeatedly

5

Writing a ProgramReminder

• We learn by example
• Not by just seeing explanations of principles
• Not just by understanding programming language rules

• The more and the more varied examples the better
• You won’t get it right the first time
• “You can’t learn to ride a bike from a correspondence course”

7

Writing a ProgramDeveloping a Program: Example

We’ll build a program in stages, making lot of “typical mistakes” along the way
• Even experienced programmers make mistakes
• Designing a good program is genuinely difficult
• It’s often faster to let the compiler detect gross mistakes than to try to get every detail right
the first time

• Concentrate on the important design choices
• Developing a simple, incomplete version allows us to experiment and get feedback
• Good programs are “grown”

8

Writing a ProgramA Simple Calculator

• Given expressions as input from the keyboard, evaluate them and write out the resulting value.

For example:
Expression: 2+2 Result: 4
Expression: 2+2*3 Result: 8
Expression: 2+3-25/5 Result: 0

• Let’s refine this a bit more ...

9

Writing a ProgramA Pseudo-Code

A first idea:

int main()
{

variables // pseudo code
while (get a line) { // what is a line?

analyze the expression // what does that mean?
evaluate the expression
print the result

}
}

• How do we represent 45+5/7 as data?
• How do we find 45 + 5 / and 7 in an input string?
• How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5)/7?
• Should we allow floating-point numbers (sure!)
• Can we have variables? v=7; m=9; v*m (later)

10

Writing a ProgramA Simple Calculator

• Wait! What would the experts do?
“Don’t re-invent the wheel”

• Computers have been evaluating expressions for 50+ years
There has to be a solution!
What did the experts do?

• Reading is good for you
Asking more experienced friends/colleagues can be far more effective, pleasant, and
time-effective than slogging along on your own

11

Writing a ProgramExpression Grammar
This is what the experts usually do: write a grammar:

Expression :
Term
Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2*3+1
Expression ‘-’ Term

Term :
Primary
Term ‘*’ Primary e.g., 1*2, (1-2)*3.5
Term ‘/’ Primary
Term ‘%’ Primary

Primary :
Number e.g., 1, 3.5
’(’ Expression ’)’ e.g., (1+2*3)

Number :
floating-point literal e.g., 3.14, 0.274e1, or 42 – as defined for C++

A program is built out of Tokens (e.g., numbers and operators).
12

Writing a ProgramGrammars

What’s a grammar?
• A set of (syntax) rules for expressions.
• The rules say how to analyze (“parse”) an expression.
• Some rules seem hard-wired into our brains

Example, you know what this means:
2*3+4/2
birds fly but fish swim

• You know that this is wrong:
2 * + 3 4/2
fly birds fish but swim

• How can we teach what we know to a computer?
Why is it right/wrong?
How do we know?

13

Writing a ProgramGrammars - “English”

14

Writing a ProgramGrammars - Expressions

15

Writing a ProgramGrammars - Expressions

16

Writing a ProgramGrammars - Expressions

17

Writing a ProgramFunctions for Parsing

We need functions to match the grammar rules

get() // read characters and compose tokens
// calls cin for input

expression () // deal with + and -
// calls term() and get()

term() // deal with *, /, and %
// calls primary () and get()

primary () // deal with numbers and parentheses
// calls expression () and get()

• Note: each function deals with a specific part of an expression and leaves everything else to
other functions – this radically simplifies each function.

• Analogy: a group of people can deal with a complex problem by each person handling only
problems in his/her own specialty, leaving the rest for colleagues.

18

Writing a ProgramFunction Return Types

What should the parser functions return? How about the result?

Token get_token (); // read characters and compose tokens
double expression (); // deal with + and -

// return the sum (or difference)
double term (); // deal with *, /, and %

// return the product (or ...)
double primary (); // deal with numbers and parentheses

// return the value

What is a Token?

19

Writing a ProgramWhat is a Token?

• We want to see input as a stream of tokens
• We read characters 1 + 4*(4.5-6) (That’s 13 characters incl. 2 spaces)
• 9 tokens in that expression: 1 + 4 * (4.5 - 6)
• 6 kinds of tokens in that expression: number + * (-)

• We want each token to have two parts
• A “kind”; e.g., number
• A value; e.g., 4

• We need a type to represent this “Token” idea
• We need to define a class (Chp. 7). For now:
• get_token() gives us the next token from input
• t.kind gives us the kind of the token
• t.value gives us the value of the token

20

Writing a ProgramDealing with + and -

Expression:
Term
Expression ’+’ Term // Note: every Expression starts with a Term
Expression ’-’ Term

double expression () // read and evaluate: 1 1+2.5 1+2+3.14 etc.
{

double left = term (); // get the Term
while (true) {

Token t = get_token (); // get the next token ...
switch (t.kind) { // ... and do the right thing with it

case ’+’: left += term (); break;
case ’-’: left -= term (); break;
default: return left; // return the value of the expression

}
}

}

21

Writing a ProgramDealing with *, / and %

double term() // exactly like expression (), but for *, /, and %
{

double left = primary (); // get the Primary
while (true) {

Token t = get_token (); // get the next Token ...
switch (t.kind) {

case ’*’: left *= primary (); break;
case ’/’: left /= primary (); break;
case ’%’: left %= primary (); break;
default: return left; // return the value

}
}

}

Oops: doesn’t compile
% isn’t defined for floating-point numbers

22

Writing a ProgramDealing with * and /

Term :
Primary
Term ‘*’ Primary // Note: every Term starts with a Primary
Term ‘/’ Primary

double term() // exactly like expression (), but for *, and /
{

double left = primary (); // get the Primary
while (true) {

Token t = get_token (); // get the next Token
switch (t.kind) {

case ’*’: left *= primary (); break;
case ’/’: left /= primary (); break;
default: return left; // return the value

}
}

}

23

Writing a ProgramDealing with Divide by 0

double term() // exactly like expression (), but for * and /
{

double left = primary (); // get the Primary
while (true) {

Token t = get_token (); // get the next Token
switch (t.kind) {

case ’*’: left *= primary (); break;
case ’/’:
{ double d = primary ();

if (d==0) error("divide by zero");
left /= d;
break;

}
default: return left; // return the value

}
}

}

24

Writing a ProgramDealing with Numbers and Parentheses

double primary () // Number or ’(’ Expression ’)’
{

Token t = get_token ();
switch (t.kind) {

case ’(’: // handle ’(’expression ’)’
{ double d = expression ();

t = get_token ();
if (t.kind != ’)’) error("’)’ expected");
return d;

}
case ’8’: // we use ’8’ to represent the ‘‘kind ’’ of a number
return t.value; // return the number ’s value
default:
error("primary expected");

}
}

25

Writing a ProgramProgram Organization

Who calls whom? (note the loop)

26

Writing a ProgramThe Program

#include "std_lib_facilities.h"

// Token stuff (explained in the next lecture)

double expression (); // declaration so that primary () can call expression ()

double primary () { /* ... */ } // deal with numbers and parentheses
double term() { /* ... */ } // deal with * and / (pity about %)
double expression () { /* ... */ } // deal with + and -

int main() { /* ... */ } // on next slide

27

Writing a ProgramThe Program - main()

int main()
try {

while (cin)
cout << expression () << ’\n’;
keep_window_open (); // for some Windows versions

}
catch (runtime_error& e) {

cerr << e.what() << endl;
keep_window_open ();
return 1;

}
catch (...) {

cerr << "exception \n";
keep_window_open ();
return 2;

}

28

Writing a ProgramExecution

2

3
4
2 // an answer
5+6
5 // an answer
X
Bad token // an answer (finally , an expected answer)

29

Writing a ProgramA Job for Inquiry Agents

• Expect “mysteries”

• Your first try rarely works as expected
• That’s normal and to be expected even for experienced programmers
• If it looks as if it works be suspicious and test a bit more
• Now comes the debugging finding out why the program misbehaves

30

Writing a Program

1 2 3 4+5 6+7 8+9 10 11 12
1 // an answer
4 // an answer
6 // an answer
8 // an answer
10 // an answer

Aha! Our program “eats” two out of three inputs How come?
Let’s have a look at expression()

31

Writing a ProgramDealing with + and -

Expression:
Term
Expression ’+’ Term // Note: every Expression starts with a Term
Expression ’-’ Term

double expression () // read and evaluate: 1 1+2.5 1+2+3.14 etc.
{

double left = term (); // get the Term
while (true) {

Token t = get_token (); // get the next token ...
switch (t.kind) { // ... and do the right thing with it

case ’+’: left += term (); break;
case ’-’: left -= term (); break;
default: return left; // <= does not use “next Token”

}
}

}

32

Writing a ProgramDealing with + and -

So, we need a way to “put back” a token!
• Put back into what?
• “the input,” of course: we need an input stream of tokens, a “token stream”

double expression () // deals with ’+’ and ’-’
{

double left = term (); // get the Term
while (true) {

Token t = get (); // get the next token from a token stream
switch (t.kind) { // ... and do the right thing with it

case ’+’: left += term (); break;
case ’-’: left -= term (); break;
default: ts.putback(t); return left; // put the unused token back

}
}

}

33

Writing a ProgramDealing with * and /

Now make the same change to term()

double term() // deal with * and /
{

double left = primary ();
while (true) {

Token t = ts.get(); // get the next Token from input
switch (t.kind) {

case ’*’:
// deal with *
case ’/’:
// deal with /
default:
ts.putback(t); // put unused token back into input stream
return left;

}
}

}

34

Writing a ProgramThe Program

• Now the program sort of work

• We get feedback and it starts the fun

35

Writing a ProgramAnother Case for our Inquiry Agent

2 3 4 2+3 2*3
2 an answer
3 an answer
4 an answer
5 an answer

What!? No “6” ?
• The program looks ahead one token. It’s waiting for the user
• So, we introduce a “print result” command
• While we’re at it, we also introduce a “quit” command

36

Writing a ProgramThe main() Program

int main()
{

double val = 0;
while (cin) {

Token t = ts.get(); // rather than get_token ()
if (t.kind == ’q’) break; // ’q’ for ‘‘quit ’’
if (t.kind == ’;’) // ’;’ for ‘‘print now ’’

cout << val << ’\n’; // print result
else

ts. putback(t); // put a token back into the input stream
val = expression (); // evaluate

}
keep_window_open ();

}
// ... exception handling ...

37

Writing a ProgramExecution

2;
2 an answer
2+3;
5 an answer
3+4*5;
23 an answer
q

38

Writing a ProgramCompleting the Program

Now wee need to complete the implementation

• Token and Token_stream; struct and class
• Get the calculator to work better
• Add features based on experience
• Clean up the code:
After many changes code often become a bit of a mess
We want to produce maintainable code

• Prompts
• Program organization

constants
• Recovering from errors
• Commenting
• Code review
• Testing

39

Writing a ProgramToken

We want a type that can hold a “kind” and a value:

’+’ ’8’
2.3

struct Token { // define a type called Token
char kind; // what kind of token
double value; // used for numbers (only): a value

}; // semicolon is required

Token t;
t.kind = ’8’; // . (dot) is used to access members

// (use ’8’ to mean ’number ’)
t.value = 2.3;

Token u = t; // a Token behaves much like a built -in type , such as int
// so u becomes a copy of t

cout << u.value; // will print 2.3

40

Writing a ProgramToken

struct Token { // user -defined type called Token
char kind; // what kind of token
double value; // used for numbers (only): a value

};

Token{’+’}; // make a Token of ‘‘kind ’’ ’+’
Token{’8’ ,4.5}; // make a Token of ‘‘kind ’’ ’8’ and value 4.5

• A struct is the simplest form of a class

• Class is C++’s term for user-defined type

• Defining types is the crucial mechanism for organizing programs in C++ as in most other
modern languages

• a class (including structs) can have
• data members (to hold information), and
• function members (providing operations on the data)

41

Writing a ProgramToken_stream

• A Token_stream reads characters, producing Tokens on demand
• We can put a Token into a Token_stream for later use
• A Token_stream uses a “buffer” to hold tokens we put back into it

Token_stream buffer: empty
Input stream: 1+2*3

For 1+2*3;, expression() calls term() which reads 1, then reads +, decides that + is a job for
“someone else” and puts + back in the Token_stream (where expression() will find it)

Token_stream buffer: Token(’+’)
Input stream: 2*3

42

Writing a ProgramToken_stream
A Token_stream reads characters, producing Tokens. We can put back a Token
Declaration
class Token_stream {
public:

// user interface:
Token get(); // get a Token
void putback(Token); // put a Token back into the Token_stream

private:
// representation: not directly accessible to users:
bool full {false}; // is there a Token in the buffer?
Token buffer; // here is where we keep a Token put back using putback ()

};
// the Token_stream starts out empty: full==false

Implementation
void Token_stream :: putback(Token t)
{

if (full) error("putback () into a full buffer");
buffer=t;
full=true;

}

43

Writing a ProgramToken_stream

Token Token_stream ::get() // read a Token from the Token_stream
{

// check if we already have a Token ready
if (full) { full=false; return buffer; }

char ch;
cin >> ch; // note that >> skips whitespace (space , newline , tab , etc.)

switch (ch) {
case ’(’: case ’)’: case ’;’: case ’q’:
case ’+’: case ’-’: case ’*’: case ’/’:

return Token{ch}; // let each character represent itself
case ’.’: case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:
{ cin.putback(ch); // put digit back into the input stream

double val;
cin >> val; // read a floating -point number
return Token{’8’,val}; // let ’8’ represent "a number"

}
default: error("Bad token");

}
}

44

Writing a ProgramStreams

Note that the notion of a stream of data is extremely general and very widely used

• Most I/O systems
E.g., C++ standard I/O streams

• with or without a putback/unget operation
We used putback for both Token_stream and cin

45

Writing a ProgramImprovements

We can improve the calculator in stages

• Style – clarity of code
• Comments
• Naming
• Use of functions
• Better prompts
• Recovery after error
• Functionality/Features – what it can do

• Negative numbers
• % (remainder/modulo)
• Pre-defined symbolic values
• Variables
• ...

 Major Point
• Providing “extra features” early causes major
problems, delays, bugs, and confusion

• “Grow” your programs
• First get a simple working version
• Then, add features that seem worth the

effort

46

Writing a ProgramPrompting

• Initially we said we wanted
Expression: 2+3; 5*7; 2+9;
Result : 5
Expression: Result: 35
Expression: Result: 11
Expression:

• But this is what we implemented
2+3; 5*7; 2+9;
5
35
11

• What do we really want?
> 2+3;
= 5
> 5*7;
= 35
>

47

Writing a ProgramAdding Prompts and Output Indicators

double val = 0;
cout << "> "; // print prompt
while (cin) {

Token t = ts.get();
if (t.kind == ’q’) break; // check for "quit"
if (t.kind == ’;’)

cout << "= " << val << "\n > "; // print "= result" and prompt
else

ts.putback(t);
val = expression (); // read and evaluate expression

}

> 2+3; 5*7; 2+9; //the program doesn’t see input before you hit "enter/return"
= 5
> = 35
> = 11
>

48

Writing a ProgramBut my Window Disappeared!

Test case: +1;

cout << "> "; // prompt
while (cin) {

Token t = ts.get();
while (t.kind == ’;’) t=ts.get(); // eat all semicolons
if (t.kind == ’q’) {

keep_window_open("~~");
return 0;

}
ts.putback(t);
cout << "= " << expression () << "\n > ";

}
keep_window_open("~~");
return 0;

49

Writing a ProgramThe Code is Getting Messy

• Bugs thrive in messy corners

• Time to clean up!
• Read through all of the code carefully

Try to be systematic (“have you looked at all the code?”)
• Improve comments
• Replace obscure names with better ones
• Improve use of functions

Add functions to simplify messy code
• Remove “magic constants”

E.g. ’8’ (What could that mean? Why ’8’?)

• Once you have cleaned up, let a friend/colleague review the code (“code review”)
Typically, do the review together

50

Writing a ProgramRemove Magic Constants

• If a “constant” could change (during program maintenance) or if someone might not recognize
it, use a symbolic constant

• If a constant is used twice, it should probably be symbolic

// Token "kind" values:
const char number = ’8’; // a floating -point number
const char quit = ’q’; // an exit command
const char print = ’;’; // a print command

// User interaction strings:
const string prompt = "> ";
const string result = "= "; // indicate that a result follows

51

Writing a ProgramRemove Magic Constants

// In Token_stream ::get():

case ’.’:
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:

{ cin.putback(ch); // put digit back into the input stream
double val;
cin >> val; // read a floating -point number
return Token{number ,val}; // rather than Token{’8’,val}

}

// In primary ():

case number: // rather than case ’8’:
return t.value; // return the number ’s value

Re-test the program whenever you have made a change

52

Writing a ProgramRemove Magic Constants

// In main ():

while (cin) {
cout << prompt; // rather than "> "
Token t = ts.get();
while (t.kind == print) t=ts.get (); // rather than ==’;’
if (t.kind == quit) { // rather than ==’q’

keep_window_open ();
return 0;

}
ts.putback(t);
cout << result << expression () << endl;

}

53

Writing a ProgramRecover from Errors

Currently, any user error terminates the program: That’s not ideal!
Structure of code

int main()
try {

// ... do "everything" ...
}
catch (exception& e) { // catch errors we understand something about

// ...
}
catch (...) { // catch all other errors

// ...
}

54

Writing a ProgramRecover from Errors

• Move code that actually does something out of main()
• leave main() for initialization and cleanup only

int main() // step 1
try {

calculate ();
keep_window_open (); // cope with Windows console mode
return 0;

}
catch (exception& e) { // errors we understand something about

cerr << e.what() << endl;
keep_window_open("~~");
return 1;

}
catch (...) { // other errors

cerr << "exception \n";
keep_window_open("~~");
return 2;

}

55

Writing a ProgramRecover from Errors

Separating the read and evaluate loop out into calculate() allows us to simplify it no more ugly
keep_window_open() !

void calculate ()
{
while (cin) {

cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get (); // first discard all "prints"
if (t.kind == quit) return; // quit
ts.putback(t);
cout << result << expression () << endl;

}
}

56

Writing a ProgramRecover from Errors

Move code that handles exceptions from which we can recover from error() to calculate()

int main() // step 2
try {

calculate ();
keep_window_open (); // cope with Windows console mode
return 0;

}
catch (...) { // other errors (don’t try to recover)

cerr << "exception \n";
keep_window_open("~~");
return 2;

}

57

Writing a ProgramRecover from Errors

void calculate ()
{

while (cin) try {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get (); // first discard all "prints"
if (t.kind == quit) return; // quit
ts.putback(t);
cout << result << expression () << endl;

}
catch (exception& e) {

cerr << e.what() << endl; // write error message
clean_up_mess (); // <<< The tricky part!

}
}

58

Writing a ProgramRecover from Errors

First try:

void clean_up_mess ()
{

while (true) { // skip until we find a print
Token t = ts.get();
if (t.kind == print) return;

}
}

Unfortunately, that doesn’t work that well. Why not? Consider the input 1@$z; 1+3; When you
try to clean_up_mess() from the bad token @, you get a "Bad token"error trying to get rid of $
We always try not to get errors while handling errors

59

Writing a ProgramRecover from Errors

• Classic problem: the higher levels of a program can’t recover well from low-level errors (i.e.,
errors with bad tokens).
Only Token_stream knows about characters

• We must drop down to the level of characters
The solution must be a modification of Token_stream:

class Token_stream {public:
Token get(); // get a Token
void putback(Token t); // put back a Token
void ignore(char c); // discard tokens up to and including a c

Private:
bool full {false}; // is there a Token in the buffer?
Token buffer; // here is where we keep a Token put back using putback ()

};

60

Writing a ProgramRecover from Errors

void Token_stream :: ignore(char c)
// skip characters until we find a c; also discard that c

{
// first look in buffer:
if (full && c== buffer.kind) { // && means and

full = false;
return;

}
full = false; // discard the contents of buffer
// now search input:
char ch = 0;
while (cin >>ch)

if (ch==c) return;
}

61

Writing a ProgramRecover from Errors

clean_up_mess() now is trivial and it works

void clean_up_mess ()
{

ts.ignore(print);
}

Note the distinction between what we do and how we do it:
• clean_up_mess() is what users see; it cleans up messes The users are not interested in
exactly how it cleans up messes

• ts.ignore(print) is the way we implement clean_up_mess() We can change/improve the
way we clean up messes without affecting users

62

Writing a ProgramSummary

1. Writing a Program

63

	Writing a Program

