
DM560

Introduction to Programming in C++

Input/Output Streams

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]



Outline

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

2



Outline

• Fundamental I/O concepts

• Files
• Opening
• Reading and writing streams

• I/O errors

• Reading a single integer

3



Outline

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

4



Input and Output

our program

input
device

device
driver

input
library

output
library

device
driver

output
device

5



The Stream Model

ostream

c

(1, 1234)

...

123

buffer

somewhere

An ostream
• turns values of various types into character sequences
• sends those characters somewhere (e.g., console, file, main memory, another computer)

6



The Stream Model

istream

c

(1, 1234)

...

123

buffer

somewhere

An istream
• turns character sequences into values of various types
• gets those characters from somewhere (e.g., console, file, main memory, another computer)

7



The Stream Model

Reading and writing

• Of typed entities
• << (output) and >> (input) plus other operations
• Type safe
• Formatted

• Typically stored (entered, printed, etc.) as text
But not necessarily (e.g. see binary streams chp. 11)

• Extensible: You can define your own I/O operations for your own types

• A stream can be attached to any I/O or storage device

8



Files

• We turn our computers on and off
The contents of our main memory is transient

• We keep what we want to preserve on disks and similar permanent storage

• A file is a sequence of bytes stored in permanent storage
• A file has a name
• The data on a file has a format

• We can read/write a file if we know its name and format

9



A File

. . .

3 :2 :1 :

• At the fundamental level, a file is a sequence of bytes numbered from 0 upwards

• Other notions can be supplied by programs that interpret a file format: For example, the 6
bytes "123.45"might be interpreted as the floating-point number 123.45

10



Files

General model:

disk main memory
I/O system

Files
(sequences of bytes)

iostreams Objects
(of various types)

11



Outline

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

12



Files

• To read a file
• We must know its name
• We must open it (for reading)
• Then we can read
• Then we must close it (typically done implicitly)

• To write a file
• We must name it
• We must open it (for writing) or create a new file of that name
• Then we can write it
• We must close it (typically done implicitly)

13



Opening a File for Reading

// ...
int main()
{

cout << "Please enter input file name: ";
string iname;
cin >> iname;
ifstream ist {iname}; // ifstream is an "input stream from a file"

// defining an ifstream with a name string
// opens the file of that name for reading

if (!ist) error("can’t open input file ", iname);
// ...

14



Opening a File for Writing

// ...
cout << "Please enter name of output file: ";
string oname;
cin >> oname;
ofstream ofs {oname}; // ofstream is an "output stream from a file"

// defining an ofstream with a name string
// opens the file with that name for writing

if (!ofs) error("can’t open output file ", oname );
//...

}

15



Reading from a File

• Suppose a file contains a sequence of pairs representing hours and temperature readings

0 60.7
1 60.6
2 60.3
3 59.22

• The hours are numbered 0..23
• No further format is assumed (Maybe we can do better than that, but not just now)
• Termination

• Reaching the end of file terminates the read
• Anything unexpected in the file terminates the read (e.g., q)

16



Reading a File

struct Reading { // a temperature reading
int hour; // hour after midnight [0:23]
double temperature;

};

vector <Reading > temps; // create a vector to store the readings

int hour;
double temperature;
while (ist >> hour >> temperature) { // read

if (hour < 0 || 23 <hour) error("hour out of range"); // check
temps.push_back( Reading{hour ,temperature} ); // store

}

17



I/O Error Handling

• Sources of errors
• Human mistakes
• Files that fail to meet specifications
• Specifications that fail to match reality
• Programmer errors
• ...

• iostream reduces all errors to one of four states
• good() //the operation succeeded
• eof() //we hit the end of input ("end of file")
• fail() //something unexpected happened
• bad() //something unexpected and serious happened

18



Sample Integer Read "Failure"

• Ended by “terminator character”
• 1 2 3 4 5 *
• State is fail()

• Ended by format error
• 1 2 3 4 5.6
• State is fail()

• Ended by “end of file”
• 1 2 3 4 5 end of file
• 1 2 3 4 5 Control-Z (Windows)
• 1 2 3 4 5 Control-D (Unix)
• State is eof()

• Something really bad
• Disk format error
• State is bad()

19



I/O Error Handling

void fill_vector(istream& ist , vector <int >& v, char terminator)
{

// read integers from ist into v until we reach eof() or terminator
for (int i; ist >> i; ) // read until "some failure"

v.push_back(i); // store in v
if (ist.eof ()) return; // fine: we found the end of file
if (ist.bad ()) error("ist is bad"); // stream corrupted; let’s get out of here!

if (ist.fail ()) { // clean up the mess as best we can and report the problem
ist.clear (); // clear stream state , so that we can look for terminator
char c;
ist >> c; // read a character , hopefully terminator
if (c != terminator) { // unexpected character

ist.unget (); // put that character back
ist.clear(ios_base :: failbit ); // set the state back to fail()

}
}

}

20



Throw an Exception for bad()

// How to make ist throw if it goes bad:
ist.exceptions(ist.exceptions ()| ios_base :: badbit );

// can be read as
// "set ist’s exception mask to whatever it was plus badbit"
// or as "throw an exception if the stream goes bad"

Given that, we can simplify our input loops by no longer checking for bad

21



Simplified Input Loop

void fill_vector(istream& ist , vector <int >& v, char terminator)
{

// read integers from ist into v until we reach eof() or terminator
for (int i; ist >> i; )

v.push_back(i);
if (ist.eof ()) return; // fine: we found the end of file

// not good() and not bad() and not eof(), ist must be fail()
ist.clear (); // clear stream state
char c;
ist >> c; // read a character , hopefully terminator
if (c != terminator) { // ouch: not the terminator , so we must fail

ist.unget (); // maybe my caller can use that character
ist.clear(ios_base :: failbit ); // set the state back to fail()

}
}

22



Outline

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

23



Reading a Single Value

// first simple and flawed attempt:

cout << "Please enter an integer in the range 1 to 10 (inclusive ):\n";
int n = 0;
while (cin >>n) { // read

if (1<=n && n<=10) break; // check range
cout << "Sorry , "

<< n
<< " is not in the [1:10] range; please try again\n";

}

// use n here

Three kinds of problems are possible
• the user types an out-of-range value
• getting no value (end of file)
• the user types something of the wrong type (here, not an integer)

24



Reading a Single Value

What do we want to do in those three cases?
• handle the problem in the code doing the read?
• throw an exception to let someone else handle the problem (potentially terminating the
program)?

• ignore the problem?

Reading a single value
• Is something we often do many times
• We want a solution that is very simple to use

25



Handle Everything: What a Mess!

cout << "Please enter an integer in the range 1 to 10 (inclusive ):\n";
int n = 0;
while (cin >> n) {

if (cin) { // we got an integer; now check it:
if (1<=n && n<=10) break;
cout << "Sorry , " << n << " is not in the [1:10] range; please try again\n";

}
else if (cin.fail ()) { // we found something that wasn’t an integer

cin.clear (); // we’d like to look at the characters
cout << "Sorry , that was not a number; please try again\n";
for (char ch; cin >>ch && !isdigit(ch); ) // throw away non -digits

/* nothing */ ;
if (!cin) error("no input"); // we didn’t find a digit: give up
cin.unget (); // put the digit back , so that we can read the number

}
else

error("no input"); // eof or bad: give up
}
// if we get here n is in [1:10]

26



The Mess: Trying to Do Everything at Once

• Problem: We have all mixed together
• reading values
• prompting the user for input
• writing error messages
• skipping past “bad” input characters
• testing the input against a range

• Solution: Split it up into logically separate parts

27



What Do We Want?

What logical parts do we want?

• int get_int(int low, int high); read an int in [low..high] from cin
• int get_int(); read an int from cin so that we can check the range int
• void skip_to_int(); we found some "garbage"character so skip until we find an int

Separate functions that do the logically separate actions

28



Skip "Garbage"and Get (Any) Integer
void skip_to_int ()
{

if (cin.fail ()) { // we found something that wasn’t an integer
cin.clear (); // we’d like to look at the characters
for(char ch; cin >>ch; ) { // throw away non -digits

if (isdigit(ch) || ch==’-’) {
cin.unget (); // put the digit back , to read the number
return;

}
}

}
error("no input"); // eof or bad: give up

}

int get_int ()
{

int n = 0;
while (true) {

if (cin >> n) return n;
cout << "Sorry , that was not a number; please try again\n";
skip_to_int ();

}
}

29



Get Integer in Range

int get_int(int low , int high)
{

cout << "Please enter an integer in the range "
<< low << " to " << high << " (inclusive ):\n";

while (true) {
int n = get_int ();
if (low <=n && n<=high) return n;
cout << "Sorry , "

<< n << " is not in the [" << low << ’:’ << high
<< "] range; please try again\n";

}
}

Usage:

int n = get_int (1 ,10);
cout << "n: " << n << endl;

int m = get_int (2 ,300);
cout << "m: " << m << endl;

 Problem: the dialog is built into the read operations
30



What Do We Really Want?

• That’s often the really important question
• Ask it repeatedly during software development
• As you learn more about a problem and its solution, your answers improve

// parameterize by integer range and "dialog"

int strength = get_int(1, 10,
"enter strength",
"Not in range , try again");

cout << "strength: " << strength << endl;

int altitude = get_int(0, 50000,
"please enter altitude in feet",
"Not in range , please try again");

cout << "altitude: " << altitude << "ft. above sea level\n";

31



Parametrize

int get_int(int low , int high , const string& greeting , const string& sorry)
{

cout << greeting << ": [" << low << ’:’ << high << "]\n";
while (true) {

int n = get_int ();
if (low <=n && n<=high) return n;
cout << sorry << ": [" << low << ’:’ << high << "]\n";

}
}

Incomplete parameterization: get_int() still “blabbers”
• “utility functions” should not produce their own error messages
• Serious library functions do not produce error messages at all
They throw exceptions (possibly containing an error message)

32



Outline

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

33



User-Defined Output: Operator <<()

ostream& operator <<(ostream& os, const Date& d)
{

return os << ’(’ << d.year()
<< ’,’ << d.month()
<< ’,’ << d.day() << ’)’;

}

Use:

void do_some_printing(Date d1 , Date d2)
{

cout << d1; // means operator <<(cout ,d1) ;

cout << d1 << d2;
// means (cout << d1) << d2;
// means (operator <<(cout ,d1)) << d2;
// means operator <<((operator <<(cout ,d1)), d2) ;

}

34



User-Defined Input: Operator >>()

istream& operator >>(istream& is, Date& dd)
// Read date in format: ( year , month , day )
{

int y, d, m;
char ch1 , ch2 , ch3 , ch4;
is >> ch1 >> y >> ch2 >> m >> ch3 >> d >> ch4;
if (!is) return is; // we didn’t get our values , so just leave
if (ch1!=’(’ || ch2!=’,’ || ch3!=’,’ || ch4!=’)’) { // oops: format error

is.clear(ios_base :: failbit ); // something wrong: set state to fail()
return is; // and leave

}
dd = Date{y,Month(m),d}; // update dd
return is; // and leave with is in the good() state

}

35



Summary

1. Input and Output Streams

2. Reading from a File

3. Example: Error Handling

4. User-Defined Output

36


	Input and Output Streams
	Reading from a File
	Example: Error Handling
	User-Defined Output

