
DM560

Introduction to Programming in C++

Graphical Interface
Object Oriented Programming

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. A Graphical Interface

2. Graphics Classes

3. Graph Class Design

2

Overview

• display model (the output part of a GUI)

• examples of use and fundamental notions such as screen coordinates, lines, and color.

• examples of shapes are Lines, Polygons, Axes, and Text

3

Outline

1. A Graphical Interface

2. Graphics Classes

3. Graph Class Design

4

Motivation

Why bother with graphics and Graphical User Interface (GUI)?

• It’s very common to need it if you write conventional PC applications

• It’s useful
• Instant feedback
• Graphing functions
• Displaying results

• It can illustrate some generally useful concepts and techniques

• It can only be done well using some pretty neat language features

• Lots of good (small) code examples

• It can be non-trivial to "get"the key concepts, thus we devote some lectures to it

• Graphics is fun!

5

Display Model

”Window”

Shape

Square

Display Engine
attach()

attach()

draw()

• Objects (such as graphs) are attached to a window.
• The display engine invokes display command (such as “draw line from x to y”) for the objects
in a window

• Objects such as Square contain vectors of lines, text, etc. for the window to draw
6

Display Model
An example illustrating the display model

int main()
{

using namespace Graph_lib; // use our graphics interface library

Point tl(100 ,200); // a point

Simple_window win(tl ,600 ,400,"Canvas"); // make a simple window

Polygon poly; // make a shape (a polygon)

poly.add(Point (300 ,200)); // add three points to the polygon
poly.add(Point (350 ,100));
poly.add(Point (400 ,200));

poly.set_color(Color ::red); // make the polygon red

win.attach(poly); // connect poly to the window

win.wait_for_button (); // give control to the display engine
}

7

The Resulting Screen

8

Graphics/GUI libraries

• We will be using a few interface classes wrote by Bjarne Stroustrup
• Interfacing to a popular GUI toolkit: Fast Light Tool Kit (FLTK) www.fltk.org
• Installation: try following Appendix D and ask teacher/instructor/friend
https://bewuethr.github.io/installing-fltk-133-under-visual-studio/
FLTK, the GUI and graphics classes from common, Project settings

• This model is far simpler than common toolkit interfaces
• The FLTK (very terse) documentation is 370 pages
• Our interface library is <20 classes and <500 lines of code
• You can write a lot of code with these classes and you can build more classes on them

• The code is portable (Windows, Unix, Mac, etc.)

• This model extends to most common graphics and GUI uses

• The general ideas can be used with any popular GUI toolkit Once you understand the graphics
classes you can easily learn any GUI/graphics library
Well, relatively easily – these libraries are huge (eg, Qt libraries)

9

www.fltk.org
https://bewuethr.github.io/installing-fltk-133-under-visual-studio/

Graphics/GUI libraries

Our Code

Our interface library

A graphics/GUI library
(eg FLTK)

The operating system (eg
Windows or Linux)

Our Screen

A layered architecture

10

Coordinates

y

x
(0, 0) (199, 0)

(0, 99)

(50, 50)

(199, 99)

• Oddly, y-coordinates grow downwards (right, down)
• Coordinates identify pixels in the window on the screen
• You can resize a window (changing x_max() and y_max())

11

Interface Classes

• An arrow −→ means "is a kind of"
• Color, Line_style, and Point are utility classes used by the other classes
• Window is our interface to the GUI library (which is our interface to the screen)
• Extensible: Grid, Block_chart, Pie_chart, etc.
• Later, GUI: Button, In_box, Out_box, ...

12

Demo Code 1

// Getting access to the graphics system (don’t forget to install):
#include "Simple_window.h" // stuff to deal with your system ’s windows
#include "Graph.h" // graphical shapes

using namespace Graph_lib; // make names available

// in main ():

Simple_window win(Point (100 ,100) ,600 ,400 ,"Canvas");
// screen coordinate (100 ,100) is top left corner of window
// window size (600 pixels wide by 400 pixels high)
// title: Canvas

win.wait_for_button (); // Display!

13

A "Blank Canvas"

14

Demo Code 2 — Add an X-Axis

Axis xa(Axis::x, Point (20,300), 280, 10, "x axis");
// make an Axis

// an axis is a kind of Shape
// Axis::x means horizontal
// starting at (20 ,300)
// 280 pixels long
// 10 "notches" ("tick marks")
// text "x axis"

win.set_label("Canvas #2");
win.attach(xa); // attach axis xa to the window
win.wait_for_button ();

15

Demo Code 3 — Add a Y-Axis

win.set_label("Canvas #3");

Axis ya(Axis::y, Point (20,300), 280, 10, "y axis");
ya.set_color(Color::cyan); // a color for the axis
ya.label.set_color(Color:: dark_red); // for the text

win.attach(ya);
win.wait_for_button ();

16

Demo Code 4 — Add a Sine Curve

win.set_label("Canvas #4");

Function sine(sin ,0,100, Point (20 ,150) ,1000 ,50 ,50); // sine curve
// plot sin() in the range [0:100)
// with (0,0) at (20 ,150)
// using 1000 points
// scale x values *50, scale y values *50

win.attach(sine);
win.wait_for_button ();

17

Demo Code 5 — Color Curve and Add a Triangle

win.set_label("Canvas #5");

sine.set_color(Color ::blue); // I changed my mind about sine’s color

Polygon poly; // make a polygon (a kind of Shape)
poly.add(Point (300 ,200)); // three points make a triangle
poly.add(Point (350 ,100));
poly.add(Point (400 ,200));

poly.set_color(Color ::red); // change the color
poly.set_style(Line_style ::dash); // change the line style

win.attach(poly);
win.wait_for_button ();

18

Demo Code 6 — Add a Rectangle

win.set_label("Canvas #6");

Rectangle r(Point (200 ,200) , 100, 50); // top left point , width , height

win.attach(r);
win.wait_for_button ();

19

Demo Code 6.1 — Add a Shape like a Rectangle

Closed_polyline poly_rect;
poly_rect.add(Point (100 ,50));
poly_rect.add(Point (200 ,50));
poly_rect.add(Point (200 ,100));
poly_rect.add(Point (100 ,100));

win.attach(poly_rect);

win.set_label("Canvas #6.1");

20

Demo Code 6.2 — Add a Point to Polygon

poly_rect.add(Point (50 ,75)); // now poly_rect has 5 points

win.set_label("Canvas #6.2");

21

Demo Code 7 — Add Fill

r.set_fill_color(Color:: yellow); // color the inside of the rectangle

poly.set_style(Line_style(Line_style ::dash ,4)); ←↩
// make the triangle fat

poly_rect.set_fill_color(Color ::green);
poly_rect.set_style(Line_style(Line_style ::dash ,2));

win.set_label("Canvas #7");

22

Demo Code 8 — Add Text

Text t(Point (150 ,150) ,"Hello , graphical world!"); // add text
// point is lower left corner on the baseline

win.attach(t);

win.set_label("Canvas #8");

23

Demo Code 8.1 — Modify Text Font and Size

t.set_font(Graph_lib ::Font:: times_bold);
t.set_font_size (20); // height in pixels

win.set_label("Canvas #8.1");

24

Demo Code 9 — Add an Image

Image ii(Point (100 ,100) ,"Resources/fltk.gif"); // open an image file
win.attach(ii);
win.set_label("Canvas #9");

25

Demo Code 9.1 — Move the Image

ii.move (250 ,150); // move 250 pixels to the right (-250 moves left)
// move 150 pixels down (-150 moves up)

win.set_label("Canvas #9.1");
win.wait_for_button ();

26

Demo Code 10 — Add Shapes, More Text

Circle c(Point (100 ,200) ,50); // center , radius
win.attach(c);

Ellipse e(Point (100 ,200) , 75 ,25); // center , horizontal radius , vertical radius
e.set_color(Color:: dark_red);
win.attach(e);

Mark m(Point (100 ,200) ,’x’);
win.attach(m);

ostringstream oss;
oss << "screen size: " << x_max () << "*" << y_max()

<< "; window size: " << win.x_max () << "*" << win.y_max ();
Text sizes(Point (100,20) ,oss.str ());
win.attach(sizes);

Image cal(Point (225 ,225) , "Resources /0603 _sdt -cpp.jpeg"); // 200*220 pixel jpeg
cal.set_mask(Point (40 ,50) ,140 ,130); // display center of image
win.attach(cal);

win.set_label("Canvas #10");
win.wait_for_button ();

27

Boilerplate

Bopilerplate standardized piece of code for use in a computer program

#include "Graph.h" // header for graphs
#include "Simple_window.h" // header containing window interface

int main ()
try
{

// the main part of your code
}
catch(exception& e) {

cerr << "exception: " << e.what() << ’\n’;
return 1;

}
catch (...) {

cerr << "Some exception\n";
return 2;

}

28

Primitive and Algorithms

• The demo shows the use of library primitives
• Just the primitives
• Just the use

• Typically what we display is the result of
• an algorithm
• reading data

• Next content:
• 13: Graphics Classes
• 14: Graphics Class Design
• 15: Graphing Functions and Data
• 16: Graphical User Interfaces

29

Outline

1. A Graphical Interface

2. Graphics Classes

3. Graph Class Design

30

Overview

We learn how the shapes and operations of the previous section are actually implemented

• Graphing
• Model
• Code organization

• Interface classes
• Point
• Line
• Lines
• Grid
• Open Polylines
• Closed Polylines
• Color
• Text
• Unnamed objects

31

Display Model

”Window”

Open_polyline

Rectangle

Display Engine

attach()

attach()

draw()

draw()

draw()

• Objects (such as graphs) are attached to (placed in) a window.
• The display engine invokes display command (such as “draw line from x to y”) for the objects
in a window

• Objects such as Rectangle add vectors of lines to the window to draw
32

Code Organization

33

Source Files

• .h (header file)
• File that contains interface information (declarations)
• #include in user and implementer

• .cpp (“code file” / “implementation file”)
• File that contains code implementing interfaces defined in headers and/or uses such interfaces
• #includes headers

• You can read the Graph.h header and later the Graph.cpp implementation file

• Instead, Window.h header and the Window.cpp implementation file are heavy of yet
unexplained C++ features

34

Design Note

The ideal of program design is to represent concepts directly in code
We take this ideal very seriously

For example:
• Window – a window as we see it on the screen
Will look different on different operating systems (not our business)

• Line – a line as you see it in a window on the screen
• Point – a coordinate point
• Shape – what’s common to shapes (details in Chapter 14)
• Color – as you see it on the screen

35

class vs struct
As from the Cpp Core Guidelines

From a language perspective class and struct differ only in the default visibility of their
members. (In class it is private; in struct it is public.)

C.1: Organize related data into structures (structs or classes)

void draw(int x, int y, int x2, int y2); // BAD: unnecessary implicit relationships
void draw(Point from , Point to); // better

C.2: Use class if the class has an invariant; use struct if the data members can vary
independently
An invariant is a logical condition for the members of an object that a constructor must
establish for the public member functions to assume.

C.8: Use class rather than struct if any member is non-public

36

Point

namespace Graph_lib // our graphics interface is in Graph_lib
{

struct Point // a Point is simply a pair of ints (the coordinates)
{

int x, y;
Point(int xx , int yy) : x(xx), y(yy) { }

}; // Note the ’;’
}

37

Line

struct Shape {
// hold lines represented as pairs of points
// knows how to display lines

};

struct Line : Shape // a Line is a Shape defined by just two Points
{

Line(Point p1, Point p2);
};

Line::Line(Point p1, Point p2) // construct a line from p1 to p2
{

add(p1); // add p1 to this shape (add() is provided by Shape)
add(p2); // add p2 to this shape

}

38

Line Example
// draw two lines:
using namespace Graph_lib;

Simple_window win(Point (100 ,100) ,600 ,400 ,"Canvas"); // make a window

Line horizontal(Point (100 ,100) , Point (200 ,100)); // make a horizontal line
Line vertical(Point (150,50), Point (150 ,150)); // make a vertical line

win.attach(horizontal); // attach the lines to the window
win.attach(vertical);

win.wait_for_button (); // Display!

Individual lines are independent
horizontal.set_color(Color ::red);
vertical.set_color(Color:: green);

39

Lines

struct Lines : Shape { // a Lines object is a set of lines
// We use Lines when we want to manipulate
// all the lines as one shape , e.g. move them all
// together with one move statement
void add(Point p1 , Point p2); // add line from p1 to p2
void draw_lines () const; // to be called by Window to draw Lines

};

Terminology:
• Lines is derived from Shape
• Lines inherits from Shape
• Lines is a kind of Shape
• Shape is the base of Lines

This is the key to what is called object-oriented programming.
(We’ll get back to this in Chapter 14)

40

Lines Example

Lines x;
x.add(Point (100 ,100) , Point (200 ,100)); // horizontal line
x.add(Point (150 ,50), Point (150 ,150)); // vertical line

win.attach(x); // attach Lines object x to Window win
win.wait_for_button (); // Draw!

41

Implementation: Lines

void Lines::add(Point p1, Point p2) // use Shape ’s add()
{

Shape ::add(p1);
Shape ::add(p2);

}

void Lines:: draw_lines () const // to somehow be called from Shape
{

for (int i=1; i<number_of_points (); i+=2)
fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);

}

Note:
• fl_line is a basic line drawing function from FLTK
• FLTK is used in the implementation, not in the interface to our classes
• We could replace FLTK with another graphics library

42

Draw Grid
Why bother with Lines when we have Line?

// A Lines object may hold many related lines
// Here we construct a grid:

int x_size = win.x_max ();
int y_size = win.y_max ();
int x_grid = 80; // make cells 80 pixels wide
int y_grid = 40; // make cells 40 pixels high

Lines grid;

for (int x=x_grid; x<x_size; x+= x_grid) // veritcal lines
grid.add(Point(x,0), Point(x,y_size));

for (int y = y_grid; y<y_size; y+= y_grid) // horizontal lines
grid.add(Point(0,y),Point(x_size ,y));

win.attach(grid); // attach our grid to our window (note grid is one object)

Oops! Last column is narrow, there’s a grid line on top of the Next button, etc.— tweaking
required (as usual)

43

Color

struct Color { // Map FLTK colors and scope them;
// deal with visibility/transparency

enum Color_type { red=FL_RED , blue=FL_BLUE , /* ... */ };

enum Transparency { invisible=0, visible =255 }; // also called Alpha

Color(Color_type cc) :c(Fl_Color(cc)), v(visible) { }
Color(int cc) :c(Fl_Color(cc)), v(visible) { }
Color(Color_type cc, Transparency t) :c(Fl_Color(cc)), v(t) { }

int as_int () const { return c; }

Transparency visibility () { return v; }
void set_visibility(Transparency t) { v = t; }

private:
Fl_Color c;
char v;

};

44

Example: Draw Red Grid

grid.set_color(Color::red);

45

Line_style

struct Line_style {
enum Line_style_type {

solid=FL_SOLID , // -------
dash=FL_DASH , // - - - -
dot=FL_DOT , //
dashdot=FL_DASHDOT , // - . - .
dashdotdot=FL_DASHDOTDOT , // -..-..

};

Line_style(Line_style_type ss) :s(ss), w(0) { }
Line_style(Line_style_type lst , int ww) :s(lst), w(ww) { }
Line_style(int ss) :s(ss), w(0) { }

int width() const { return w; }
int style() const { return s; }

private:
int s;
int w;

};

46

Example: Colored Fat Dash Grid

grid.set_style(Line_style(Line_style::dash,2));

47

Polylines

struct Open_polyline : Shape { // open sequence of lines
void add(Point p) { Shape::add(p); }

};

struct Closed_polyline : Open_polyline { // closed sequence of lines
void draw_lines () const
{

Open_polyline :: draw_lines (); // draw lines (except the closing one)
// draw the closing line:
fl_line(point(number_of_points ()-1).x,

point(number_of_points () -1).y,
point (0).x,
point (0).y

);
}
void add(Point p) { Shape::add(p); } // not needed (why?)

};

48

Open_polyline

Open_polyline opl;
opl.add(Point (100 ,100));
opl.add(Point (150 ,200));
opl.add(Point (250 ,250));
opl.add(Point (300 ,200));

49

Closed_polyline

Closed_polyline cpl;
cpl.add(Point (100 ,100));
cpl.add(Point (150 ,200));
cpl.add(Point (250 ,250));
cpl.add(Point (300 ,200));

50

Closed_polyline

cpl.add(Point (100 ,250));

A Closed_polyline is not a polygon
• some Closed_polylines look like polygons
• a Polygon is a Closed_polyline where no
lines cross

• a Polygon has a stronger invariant than a
Closed_polyline

51

Text

struct Text : Shape {
Text(Point x, const string& s) // x is the bottom left of the first letter

: lab(s),
fnt(fl_font ()), // default character font
fnt_sz(fl_size ()) // default character size
{ add(x); } // store x in the Shape part of the Text object

void draw_lines () const;

// ... the usual ‘‘getter and setter ’’ member functions ...
private:

string lab; // label
Font fnt; // character font of label
int fnt_sz; // size of characters in pixels

};

52

Add Text

Text t(Point (200 ,200) , "A closed polyline that isn’t a polygon");
t.set_color(Color::blue);

53

Implementation: Text

void Text:: draw_lines () const
{

fl_draw(lab.c_str(), point (0).x, point (0).y);
}

// fl_draw () is a basic text drawing function from FLTK

54

Color Matrix

Drawing a color matrix.

Good example of:
• how many colors we have to work with
• how messy two-dimensional addressing can
be (see Matrices chp 24)

• how to avoid inventing names of hundreds of
objects

55

Color Matrix (16× 16)

Simple_window win20(Point (100 ,100) ,600 ,400 ,"16x16 color matrix");

Vector_ref <Rectangle > vr; // use like vector
// but imagine that it holds references to objects

for (int i = 0; i<16; ++i) { // i is the horizontal coordinate
for (int j = 0; j<16; ++j) { // j is the vertical coordinate

vr.push_back(new Rectangle(Point(i*20,j*20) ,20 ,20));
vr[vr.size ()-1]. set_fill_color(i*16+j);
win20.attach(vr[vr.size () -1]);

}
}
// new makes an object that you can give to a Vector_ref to hold
// Vector_ref is built using std::vector , but is not in the standard library

56

Outline

1. A Graphical Interface

2. Graphics Classes

3. Graph Class Design

57

Overview

• Library design considerations

• Class hierarchies (object-oriented programming)

• Data hiding

58

Ideals

Our ideal of program design is to represent the concepts of the application domain directly in code.

If you understand the application domain, you understand the code, and vice versa. For example:
• Window – a window as presented by the operating system
• Line – a line as you see it on the screen
• Point – a coordinate point
• Color – as you see it on the screen
• Shape – what’s common for all shapes in our Graph/GUI view of the world

In the last example, Shape is different from the rest in that it is a generalization. You can’t make
an object that is "just a Shape"

59

Logically Identical Operations Have Same Name

For every class:
• draw_lines() does the drawing
• move(dx,dy) does the moving
• s.add(x) adds some x (e.g., a point) to a shape s.

For every property x of a Shape,
• x() gives its current value and
• set_x() gives it a new value

Example:

Color c = s.color ();
s.set_color(Color::blue);

60

Logically Different Operations Have Different Names

Lines ln;
Point p1(100 ,200);
Point p2(200 ,300);
ln.add(p1 ,p2); // add points to ln (make copies)
win.attach(ln); // attach ln to window

Why not win.add(ln)?
add() copies information; attach() just creates a reference we can change a displayed object
after attaching it, but not after adding it

(100,200)
(200,300)

(100,200)

(200,300)

p1:

p2:

ln:

&ln

win:
add()

attach()

61

Expose Uniformly

Data should be private
• Data hiding – so it will not be changed inadvertently
• Use private data, and pairs of public access functions to get and set the data

c.set_radius (12); // set radius to 12
c.set_radius(c.radius ()*2); // double the radius (fine)
c.set_radius (-9); // set_radius () could check for negative ,

// but doesn’t yet
double r = c.radius (); // returns value of radius
c.radius = -9; // error: radius is a function (good!)
c.r = -9; // error: radius is private (good!)

Our functions can be private or public
• public for interface
• private for functions used only internally to a class

62

What Does private Imply?

• We can change our implementation after release
• We don’t expose FLTK types used in representation to our users

We could replace FLTK with another library without affecting user code
• We could provide checking in access functions

But we haven’t done so systematically (later?)
• Functional interfaces can be nicer to read and use

E.g., s.add(x) rather than s.points.push_back(x)
• We enforce immutability of shape

• Only color and style change; not the relative position of points
• const member functions

• The value of this encapsulation varies with application domains
• Is often most valuable
• Is the ideal, i.e., hide representation unless you have a good reason not to

63

Interface Design
Regular Interfaces

Line ln(Point (100 ,200) , Point (300 ,400));
Mark m(Point (100 ,200) , ’x’); // display a single point as an ’x’
Circle c(Point (200 ,200) ,250);

// Alternative (not supported):
Line ln2(x1, y1, x2, y2); // from (x1,y1) to (x2,y2)

// How about? (not supported):
Rectangle s1(Point (100 ,200) ,200 ,300); // width ==200 height ==300
Rectangle s2(Point (100 ,200) , Point (200 ,300)); // width ==100 height ==100

Rectangle s3(100 ,200 ,200 ,300);// is 200 ,300 a point or a width plus a height?

64

A Library

• A collection of classes and functions meant to be used together As building blocks for
applications To build more such "building blocks“

• A good library models some aspect of a domain
• It doesn’t try to do everything
• Our library aims at simplicity and small size for graphing data and for very simple GUI

• We can’t define each library class and function in isolation
• A good library exhibits a uniform style (regularity)

65

Class Shape
All our shapes are based on the Shape class
E.g. a Polygon is a kind of Shape

66

Class Shape is Abstract

We can’t make a ”plain” Shape

protected:
Shape (); // protected to make class Shape abstract

For example:

Shape ss; // error: cannot construct Shape

Protected means “can only be used from this class or from a derived class”

Instead, we use Shape as a base class

struct Circle : Shape { // "a Circle is a Shape"
// ...

};

67

Class Shape

• Shape ties our graphics objects to ”the screen”
• Window ”knows about” Shapes
• All our graphics objects are kinds of Shapes

• Shape is the class that deals with color and style
It has Color and Line_style members

• Shape can hold Points

• Shape has a basic notion of how to draw lines
It just connects its Points

68

Class Shape

Shape deals with color and style
It keeps its data private and provides access functions

void set_color(Color col);
Color color() const;
void set_style(Line_style sty);
Line_style style() const;
// ...

private:
// ...
Color line_color;
Line_style ls;

69

Class Shape

Shape stores Points
It keeps its data private and provides access functions

Point point(int i) const; // read -only access to points
int number_of_points () const;
// ...

protected:
void add(Point p); // add p to points
// ...

private:
vector <Point > points; // not used by all shapes

70

Class Shape

• Shape itself can access points directly:

void Shape:: draw_lines () const // draw connecting lines
{

if (color (). visible () && points.size ()>1)
for (int i=1; i<points.size (); ++i)

fl_line(points[i-1].x,points[i-1].y,points[i].x,points[i].y);
}

• Others (incl. derived classes) use point() and number_of_points(). Why?

void Lines:: draw_lines () const // draw a line for each pair of points
{

for (int i=1; i<number_of_points (); i+=2)
fl_line(point(i-1).x, point(i-1).y, point(i).x, point(i).y);

}

71

Class Shape
Implementation of Drawing

void Shape::draw() const
// The real heart of class Shape (and of our graphics interface system)
// called by Window (only)

{
Fl_Color oldc = fl_color (); // save old color
// there is no good portable way of retrieving the current style (sigh!)
fl_color(line_color.as_int ()); // set color and style
fl_line_style(ls.style(),ls.width ());

draw_lines(); // call the appropriate draw_lines ()
// a virtual call
// here is what is specific for a "derived class" is done

fl_color(oldc); // reset color to previous
fl_line_style (0); // (re)set style to default

}

72

Class Shape

• In class Shape

virtual void draw_lines () const; // draw the appropriate lines

• In class Circle

void draw_lines () const { /* draw the Circle */ }

• In class Text

void draw_lines () const { /* draw the Text */ }

• Circle, Text, and other classes:
• Derive from Shape
• May override draw_lines()

73

Class Shape

class Shape { // deals with color and style , and holds a sequence of lines
public:

void draw() const; // deal with color and call draw_lines ()
virtual void move(int dx, int dy); // move the shape +=dx and +=dy

void set_color(Color col); // color access
int color() const;
// ... style and fill_color access functions ...

Point point(int i) const; // (read -only) access to points
int number_of_points () const;

protected:
Shape (); // protected to make class Shape abstract
void add(Point p); // add p to points
virtual void draw_lines() const; // simply draw the appropriate lines

private:
vector <Point > points; // not used by all shapes
Color lcolor; // line color
Line_style ls; // line style
Color fcolor; // fill color
// ... prevent copying ...

};
74

Display Model Completed

crcl

txt

draw()

draw() attach()

draw()

wait_for_bottom()

draw_lines()

draw_lines()

Shape

Circle

draw_lines()

Shape

Text

draw_lines()

Window
Display Engine

Our code

75

Language Mechanisms

Most popular definition of object-oriented programming:

OOP ≡ inheritance + polymorphism + encapsulation

• Inheritance: Base and derived classes

struct Circle : Shape { ... };

• Polymorphism: Also called run-time polymorphism or dynamic dispatch Virtual functions

virtual void draw_lines () const;

• Encapsulation: Private and protected

protected: Shape ();
private: vector <Point > points;

76

A Simple Class Hierarchy
We design a simple (and mostly shallow) class hierarchy based on Shape

77

Object Layout

The data members of a derived class are simply added at the end of its base class (a Circle is a
Shape with a radius)

Shape

points
line_color
ls

Circle

points
line_color
ls

r

78

Benefits of Inheritance

• Interface inheritance
• A function expecting a shape (a Shape&) can accept any object of a class derived from Shape.
• Simplifies use (sometimes dramatically)
• We can add classes derived from Shape to a program without rewriting user code

(Adding without touching old code is one of the “holy grails” of programming)

• Implementation inheritance
• Simplifies implementation of derived classes
• Common functionality can be provided in one place
• Changes can be done in one place and have universal effect

(Another “holy grail”)

79

Access Model

A member of a class (data, function, or type member) can be:
private, protected, or public

If a base class of a derived class D is
• private, then its public and protected
members can be accessed only by members
of D

• protected, then its public and protected
members can be accessed only by members
of D and of classes derived from D

• public, then its public members can be
accessed by all

80

Pure Virtual Functions
Often, a function in an interface can’t be implemented
E.g. the data needed is “hidden” in the derived class

• Make it a pure virtual function (=0)
• We must ensure that a derived class implements that function

Abstract interfaces (pure interfaces, abstract classes): classes that cannot be instantiated and only
used as base classes:

• contain pure virtual functions
• have protected constructors.

struct Engine { // interface to electric motors
// no data
// (usually) no constructor
virtual double increase(int i) =0; // must be defined in a derived class
// ...
virtual ~Engine (); // (usually) a virtual destructor

};

Engine eee; // error: Collection is an abstract class

81

Pure Virtual Functions

A pure interface can be used as a base class
(Constructors and destructors are described in detail in chapters 17-19)

Class M123 : public Engine { // engine model M123
// representation

public:
M123 (); // construtor: initialization , acquire resources
double increase(int i) { /* ... */ } // overrides Engine :: increase
// ...
~M123 (); // destructor: cleanup , release resources

};

M123 window3_control; // OK

82

Technicality: Copying

If you don’t know how to copy an object, prevent copying
Abstract classes typically should not be copied

class Shape {
// ...
Shape(const Shape &) = delete; // don’t ‘‘copy construct ’’
Shape& operator =(const Shape &) = delete; // don’t ‘‘copy assign ’’

};

void f(Shape& a)
{

Shape s2 = a; // error: no Shape ‘‘copy constructor ’’ (it’s deleted)
a = s2; // error: no Shape ‘‘copy assignment ’’ (it’s deleted)

}

83

Technicality: Overriding
To override a virtual function, you need

• A virtual function
• Exactly the same name
• Exactly the same type

struct B {
void f1(); // not virtual
virtual void f2(char);
virtual void f3(char) const;
virtual void f4(int);

};

struct D : B {
void f1(); // doesn ’t override
void f2(int); // doesn’t override
void f3(char); // doesn’t override
void f4(int); // overrides

};

84

Technicality: Overriding
To override a virtual function, you need

• A virtual function
• Exactly the same name
• Exactly the same type

struct B {
void f1(); // not virtual
virtual void f2(char);
virtual void f3(char) const;
virtual void f4(int);

};

struct D : B {
void f1() override; // error
void f2(int) override; // error
void f3(char) overrride; // error
void f4(int) override; // ok

};

84

Technicality: Overriding

To invoke a virtual function, you need

• a reference, or
• a pointer

D d1;
B& bref = d1; // d1 is a D, and a D is a B, so d1 is a B
bref.f4(2); // calls D::f4(2) on d1 since bref names a D

// pointers are in chapter 17
B *bptr = &d1; // d1 is a D, and a D is a B, so d1 is a B
bptr ->f4(2); // calls D::f4(2) on d1 since bptr points to a D

85

Summary

1. A Graphical Interface

2. Graphics Classes

3. Graph Class Design

86

	A Graphical Interface
	Graphics Classes
	Graph Class Design

