
DM560

Introduction to Programming in C++

Vector and Free Store
(Pointers and Memory Allocation)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

2

Overview

• Vector revisited: How are they implemented?
• Pointers and free store

• Allocation (new)
• Access

• Arrays and subscripting: []
• Dereferencing: *

• Deallocation (delete)

• Destructors
• Initialization
• Copy and move
• Arrays
• Array and pointer problems
• Changing size
• Templates
• Range checking and exceptions

4

Vector

• Vector is the most useful container
• Simple
• Compactly stores elements of a given type
• Efficient access
• Expands to hold any number of elements
• Optionally range-checked access

• How is that done?
• That is, how is vector implemented?
• We’ll answer that gradually, feature after feature

• Vector is the default container
• Prefer vector for storing elements unless there’s a good reason not to

5

Building from the Ground Up

The hardware provides memory and addresses
• Low level
• Untyped
• Fixed-sized chunks of memory
• No checking
• As fast as the hardware architects can make it

The application builder needs something like a vector
• Higher-level operations
• Type checked
• Size varies (as we get more data)
• Run-time range checking
• Close to optimally fast

6

Building from the Ground Up

• At the lowest level, close to the hardware, life’s simple and brutal
• You have to program everything yourself
• You have no type checking to help you
• Run-time errors are found when data is corrupted or the program crashes

• We want to get to a higher level as quickly as we can
• To become productive and reliable
• To use a language “fit for humans”

• Chapters 17-19 basically show all the steps needed
• The alternative to understanding is to believe in “magic”
• The techniques for building vector are the ones underlying all higher-level work with data

structures

7

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

8

Vector

A vector
• Can hold an arbitrary number of elements
(Up to whatever physical memory and the operating system can handle)

• That number can vary over time
E.g. by using push_back()

Example:

vector <double > age (4);
age [0]=.33; age [1]=22.0; age [2]=27.2; age [3]=54.2;

0.33

age[0]:

22.0

age[1]:

27.2

age[2]:

54.2

age[3]:
age:

9

Vector

// a very simplified vector of doubles (like vector <double >):
class vector {

int sz; // the number of elements (’the size ’)
double* elem; // pointer to the first element

public:
vector(int s); // constructor: allocate s elements ,

// let elem point to them ,
// store s in sz

int size() const { return sz; } // the current size
};

* means pointer to so double* is a pointer to double
• What is a pointer?
• How do we make a pointer point to elements?
• How do we allocate elements?

10

Pointer Values

• Pointer values are memory addresses
• think of them as a kind of integer values
• the first byte of memory is 0, the next 1, and so on
• a pointer p can hold the address of a memory location

0 1 2

0x600000

p

7

0x600000 220 − 1

• A pointer points to an object of a given type
e.g. a double* points to a double, not a string

• A pointer’s type determines how the memory referred to by the pointer’s value is used
e.g. what a double* points to can be added but not, say, concatenated

11

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

12

Vector: Constructor
An (simplified) implementation of the constructor:

vector :: vector(int s) // vector ’s constructor
:sz(s), // store the size s in sz
elem(new double[s]) // allocate s doubles on the free store

// store a pointer to those doubles in elem
{
}
// Note: new does not initialize elements (but the standard vector does)

free store

elem:

4

sz:

a pointer

new allocates memory from the
free store and returns a pointer
to the allocated memory

13

The Computer’s Memory

As a program sees it

• Local variables “live on the stack”

• Global variables are static data

• The executable code is in the code section

Code

Static data

Free store

Stack

Memory layout

14

The Free Store (aka the Heap)

You request memory to be allocated on the free store by the new operator

• The new operator returns a pointer to the allocated memory

• A pointer is the address of the first byte of the memory
For example

int* p = new int; // allocate one uninitialized int
// int* means pointer to int

int* q = new int [7]; // allocate seven uninitialized ints
// "an array of 7 ints"

double* pd = new double[n]; // allocate n uninitialized doubles

• A pointer points to an object of its specified type

• A pointer does not know how many elements it points to

15

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

16

Access

Individual elements:

int* p1 = new int; // get (allocate) a new uninitialized int
int* p2 = new int (5); // get a new int initialized to 5

???

p1:

5

p2:

int x = *p2; // get/read the value pointed to by p2
// (or "get the contents of what p2 points to")
// in this case , the integer 5

int y = *p1; // undefined: y gets an undefined value; don’t do that

17

Access
Arrays are sequences of elements numbered [0], [1], [2], ...:
int* p3 = new int [5]; // get (allocate) 5 ints:

7

[0]

9

[1] [2] [3] [4]
p3:

• set (write to) the 1st element of p3
p3[0] = 7;
p3[1] = 9;

• get the value of the 2nd element of p3
int x2 = p3[1];

• the dereference operator * for an array: *p3 means p3[0] (and vice versa)
int x3 = *p3;

18

Why Use Free Store?

To allocate objects that have to outlive the function that creates them:
For example:

double* make(int n) // allocate n ints
{

return new double[n];
}

Another example: vector’s constructor

19

Pointer Values

Pointer values are memory addresses
• Think of them as a kind of integer values
• The first byte of memory is 0, the next 1, and so on

0 1 2 p2

7

*p2 220 − 1

You can see a pointer value (but you rarely need/want to):

int* p1 = new int (7); // allocate an int and initialize it to 7
double* p2 = new double (7); // allocate a double and initialize it to 7.0
cout << "p1==" << p1 << " *p1==" << *p1 << "\n";
cout << "p2==" << p2 << " *p2==" << *p2 << "\n";

Output:

p1==0 x7fbba54028b0 *p1==7
p2==0 x7fbba54028c0 *p2==7

20

Access

A pointer does not know the number of elements that it’s pointing to
(only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok
p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error 8.2 ��7.3

p1:

double* p2 = new double [100];
*p2 = 7.3; // ok
p2[17] = 9.4; // ok
p2[-4] = 2.4; // ouch! Undetected error

7.3

p1:

21

Access

A pointer does not know the number of elements that it’s pointing to

double* p1 = new double;
double* p2 = new double [100];

p1[17] = 9.4; // error (obviously)

p1 = p2; // assign the value of p2 to p1

p1[17] = 9.4; // now ok

p1:

p2:
[0]: [99]:

22

Access
A pointer does know the type of the object that it’s pointing to

int* pi1 = new int (7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1

double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*

There are no implicit conversions between a pointer to one value type to a pointer to another value
type

However, there are implicit conversions between value types:

*pc = 8; // ok: we can assign an int to a char
*pc = *pi1; // ok: we can assign an int to a char

7

pi1:

7

pc:

23

Note

• With pointers and arrays we are “touching” hardware directly with only the most minimal
help from the language. Here is where serious programming errors can most easily be made,
resulting in malfunctioning programs and obscure bugs

• Be careful and operate at this level only when you really need to

• If you get segmentation fault, bus error, or core dumped, suspect an uninitialized or
otherwise invalid pointer

• vector is one way of getting almost all of the flexibility and performance of arrays with
greater support from the language (read: fewer bugs and less debug time).

24

Vector: Construction and Primitive Access

A very simplified vector of doubles:

class vector {
int sz; // the size
double* elem; // a pointer to the elements

public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
double get(int n) const { return elem[n]; } // access: read
void set(int n, double v) { elem[n]=v; } // access: write
int size() const { return sz; } // the current size

};

vector v(10);
for (int i=0; i<v.size (); ++i) { v.set(i,i); cout << v.get(i) << ’ ’; }

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

elem:

10

sz:

25

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

26

A Problem: Memory Leak

double* calc(int result_size , int max)
{

double* p = new double[max]; // allocate another max doubles
// i.e., get max doubles from the free store

double* result = new double[result_size];
// ... use p to calculate results to be put in result ...
delete[] p; // de-allocate (free) that array
return result;

}

double* r = calc (200 ,100); // oops! We "forgot" to give the memory
// allocated for p back to the free store

delete[] r; // easy to forget

• Lack of de-allocation (usually called memory leaks) can be a serious problem in real-world
programs

• A program that must run for a long time can’t afford any memory leaks

27

Memory Leaks

• A program that needs to run “forever” can’t afford any memory leaks
An operating system is an example of a program that runs “forever”

• If a function leaks 8 bytes every time it is called, how many megabytes it has leaked/lost if it
is called 130,000 times?

• All memory is returned to the system at the end of the program
If you run using an operating system (Windows, Unix, whatever)

• Program that runs to completion with predictable memory usage may leak without causing
problems i.e., memory leaks aren’t “good/bad” but they can be a major problem in specific
circumstances

28

Memory Leaks

Another way to get a memory leak

void f()
{

double* p = new double [27];
// ...
p = new double [42];
// ...
delete [] p;

}

The 1st array (of 27 doubles) leaked
p:

1st value

2nd value

29

Memory Leaks

How do we systematically and simply avoid memory leaks?

• Don’t mess directly with new and delete. Use vector

• Or use a garbage collector
• A garbage collector is a program the keeps track of all of your allocations and returns unused

free-store allocated memory to the free store (not covered in this course; see
http://www.stroustrup.com/C++.html)

• Unfortunately, even a garbage collector doesn’t prevent all leaks (See also Chapter 25)

30

http://www.stroustrup.com/C++.html

Vector: Memory Leak

void f(int x)
{

vector v(x); // define a vector
// (which allocates x doubles on the free store)

// ... use v ...

// give the memory allocated by v back to the free store
// but how? (vector ’s elem data member is private)

}

31

Vector: Destructor

// a very simplified vector of doubles:
class vector {

int sz; // the size
double* elem; // a pointer to the elements

public:
vector(int s) // constructor: allocates/acquires memory

:sz(s), elem(new double[s]) { }
~vector () // destructor: de-allocates/releases memory

{ delete[] elem; }
// ...

};

Note: this is an example of a general and important technique:
• acquire resources in a constructor
• release them in the destructor

Examples of resources: memory, files, locks, threads, sockets

32

Memory Leak

void f(int x)
{

int* p = new int[x]; // allocate x ints
vector v(x); // define a vector (which allocates another x ints)
// ... use p and v ...
delete[] p; // deallocate the array pointed to by p
// the memory allocated by v is implicitly deleted here by vector ’s destructor

}

• The delete now looks verbose and ugly
• How do we avoid forgetting to delete[] p? (Experience shows that we often forget)
Prefer deletes in destructors

33

Free Store Summary
Allocate using new

• new allocates an object on the free store, sometimes initializes it, and returns a pointer to it
int* pi = new int; // default initialization (none for int)
char* pc = new char(’a’); // explicit initialization
double* pd = new double [10]; // allocation of (uninitialized) array

• new throws a bad_alloc exception if it can’t allocate (out of memory)

Deallocate using delete and delete[]
• delete and delete[] return the memory of an object allocated by new to the free store so
that the free store can use it for new allocations
delete pi; // deallocate an individual object
delete pc; // deallocate an individual object
delete[] pd; // deallocate an array

• Delete of a zero-valued pointer (the null pointer) does nothing
char* p = nullptr; /// old C++ char* p=0;
delete p; // harmless

34

Outline

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

35

void*

• void* means “pointer to some memory that the compiler doesn’t know the type of”

• We use void* when we want to transmit an address between pieces of code that really don’t
know each other’s types – so the programmer has to know
Example: the arguments of a callback function

• There are no objects of type void
void v; // error
void f(); // f() returns nothing

// f() does not return an object of type void

• Any pointer to object can be assigned to a void*

int* pi = new int;
double* pd = new double [10];
void* pv1 = pi;
void* pv2 = pd;

36

void*

To use a void* we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
pv = 7; // error: you can’t dereference a void

// this’s good: the int 7 is not represented like the double 7.0
pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only
when absolutely necessary

37

void*

• void* is the closest C++ has to a plain machine address
• Some system facilities require a void*
• For example, in the callback of the FLTK FUI, Address is a void*:

typedef void* Address;
void Lines_window :: cb_next(Address ,Address)

38

Pointers and References

Think of a reference as:

• an automatically dereferenced pointer
• or as “an alternative name for an object” (alias)

Differences:
• a reference must be initialized
• the value of a reference cannot be changed after initialization

int x = 7;
int y = 8;
int* p = &x; *p = 9;
p = &y; // ok
int& r = x; x = 10;
r = &y; // error (and so is all other attempts to change what r refers to)

39

Summary

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*

40

DM560

Introduction to Programming in C++

Vector and Free Store
(Vectors and Arrays)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

2

Overview

• Vector revisited: How are they implemented?
• Pointers and free store
• Destructors
• Initialization
• Copy and move
• Arrays
• Array and pointer problems
• Changing size
• Templates
• Range checking and exceptions

3

Reminder

Why look at the vector implementation?
• To see how the standard library vector really works
• To introduce basic concepts and language features

4 Free store (heap)
• Copy and move
• Dynamically growing data structures

• To see how to directly deal with memory
• To see the techniques and concepts you need to understand C, including the dangerous ones
• To demonstrate class design techniques
• To see examples of “neat” code and good design

4

vector

A very simplified vector of doubles (as far as we got so far):

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
vector(int s) :sz{s}, elem{new double[s]} { } // constructor

// new allocates memory
~vector () { delete[] elem; } // destructor

// delete [] deallocates memory

double get(int n) { return elem[n]; } // access: read
void set(int n, double v) { elem[n]=v; } // access: write

int size() const { return sz; } // the number of elements
};

5

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

6

Initialization: Initializer Lists
We would like simple, general, and flexible initialization. So we provide suitable constructors:
class vector {
public:

vector(int s); // constructor (s is the element count)

vector(std:: initializer_list <double > lst); // initializer -list constructor
};

vector v1 (20); // 20 elements , each initialized to 0
vector v2 {1,2,3,4,5}; // 5 elements: 1,2,3,4,5

vector :: vector(int s) // constructor (s is the element count)
:sz{s}, elem{new double[s]} { }

{
for (int i=0; i<sz; ++i) elem[i]=0;

}

vector :: vector(std:: initializer_list <double > lst) // initializer -list constructor
:sz{lst.size()}, elem{new double[sz]} { }

{
std::copy(lst.begin(),lst.end(),elem); // copy lst to elem

}

7

Initialization

If we initialize a vector by 17 is it
• 17 elements (with value 0)?
• 1 element with value 17?

By convention use
• () for number of elements
• {} for elements

For example

vector v1 (17); // 17 elements , each with the value 0
vector v2 {17}; // 1 element with value 17

8

Initialization: Explicit Constructors

A problem:
• A constructor taking a single argument defines a conversion from the argument type to the
constructor’s type

• Our vector had vector::vector(int), so

vector v1 = 7; // v1 has 7 elements , each with the value 0

void do_something(vector v)
do_something (7); // call do_something () with a vector of 7 elements

This is very error-prone.
• Unless, of course, that’s what we wanted
• For example

complex <double > d = 2.3; // convert from double to complex <double >

9

Initialization: Explicit Constructors

A solution:
Declare constructors taking a single argument explicit unless you want a conversion from the
argument type to the constructor’s type

class vector {
// ...

public:
explicit vector(int s); // constructor (s is the element count)
// ...

};

vector v1 = 7; // error: no implicit conversion from int

void do_something(vector v);
do_something (7); // error: no implicit conversion from int

10

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

11

A Problem

Copy doesn’t work as we would have hoped (expected?)

void f(int n)
{

vector v(n); // define a vector
vector v2 = v; // what happens here?

// what would we like to happen?
vector v3;
v3 = v; // what happens here?

// what would we like to happen?
// ...

}

• Ideally: v2 and v3 become copies of v (that is, = makes copies) and all memory is returned to
the free store upon exit from f()

• That’s what the standard vector does,
but it’s not what happens for our still-too-simple vector

12

Naïve Copy Initialization (the Default)
By default copy means copy the data members
void f(int n)
{

vector v1(n);
vector v2 = v1; // initialization:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)

13

Naïve Copy Assignment (the Default)
void f(int n)
{

vector v1(n);
vector v2(4);
v2 = v1; // assignment:

// by default , a copy of a class copies its members
// so sz and elem are copied

}

3v1:

3v2:

2nd

1st

Disaster when we leave f()!
v1’s elements are deleted twice (by the destructor)

memory leak: v2’s elements are not deleted
14

Copy Constructor (Initialization)

class vector {
int sz;
double* elem;

public:
vector(const vector &) ; // copy constructor: define copy (below)
// ...

};

vector :: vector(const vector& a)
:sz{a.sz}, elem{new double[a.sz]}
// allocate space for elements , then initialize them (by copying)

{
for (int i = 0; i<sz; ++i) elem[i] = a.elem[i];

}

15

Copy with Copy Constructor

void f(int n)
{

vector v1(n);
vector v2 = v1; // copy using the copy constructor

// the for loop copies each value from v1 into v2
}

3v1:

3v2:

The destructor correctly deletes all elements
(once only for each vector)

16

Copy Assignment

class vector {
int sz;
double* elem;

public:
vector& operator =(const vector& a); // copy assignment: define copy (next slide)
// ...

};

x=a;

8 4 2

1 2 3 4

8 4 2

3a:

3�4x: 1st
2nd

Memory leak? (no)

Operator = must copy a’s elements

17

Copy Assignment (Implementation)

Like copy constructor, but we must deal with old elements.
Make a copy of a then replace the current sz and elem with a’s

vector& vector :: operator =(const vector& a)
{

double* p = new double[a.sz]; // allocate new space
for (int i = 0; i<a.sz; ++i) p[i] = a.elem[i]; // copy elements
delete[] elem; // deallocate old space
sz = a.sz; // set new size
elem = p; // set new elements
return *this; // return a self -reference

}

• The identifier this is a pointer that points to the object for which the member function was
called (see par. 17.10).

• It is immutable

18

Copy with Copy Assignment (Implementation)

void f(int n)
{

vector v1 {6 ,24 ,42};
vector v2(4);
v2 = v1; // assignment

}

6 24 42

1 2 3 4

6 24 42

3v1:

3�4v2:
1st
2nd

delete[] d by = in
previous slide. No
memory leak

Operator = must copy a’s elements

19

Copy Terminology

Shallow copy: copy only a pointer so that the two pointers
now refer to the same object

• What pointers and references do
x: Copy of x:

y:

Deep copy: copy what the pointer points to so that the
two pointers now each refer to a distinct object

• What vector, string, etc. do
• Requires copy constructors and copy assignments for
container classes

• Must copy “all the way down” if there are more levels
in the object

x:

y:

Copy of x:

Copy of y:

20

Deep and Shallow Copy

vector <int > v1 {2,4};
vector <int > v2 = v1; // deep copy (v2 gets its own copy of v1’s elements)
v2[0] = 3; // v1[0] is still 2

2v1:

2 4

2v2:

�23 4

int b = 9;
int& r1 = b;
int& r2 = r1; // shallow copy (r2 refers to the same variable as r1)
r2 = 7; // b becomes 7

�97b:r1:r2:

21

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

22

Move

Consider

vector fill(istream& is)
{

vector res;
for (double x; is>>x;) res.push_back(x);
return res; // returning a copy of res could be expensive

// returning a copy of res would be silly!
}

void use()
{

vector vec = fill(cin);
// ... use vec ...

}

23

Move: What We Want

Before return res in fill():

3res:

uninitializedvec:

After return res; (after vector vec = fill(cin);)

nullptr0res:

3vec:

24

Move Constructor and Move Assignment

Define move operations to “steal” representation

class vector {
int sz;
double* elem;

public:
vector(vector &&); // move constructor: "steal" the elements

vector& operator =(vector &&); // move assignment:
// destroy target and "steal" the elements

// ...
};

&& indicates move

25

Move Constructor and Assignment (Implementation)

move constructor: “steal” the elements

vector :: vector(vector && a) // move constructor
:sz{a.sz}, elem{a.elem} // copy a’s elem and sz

{
a.sz = 0; // make a the empty vector
a.elem = nullptr;

}

move assignment: destroy target and “steal” the elements

vector& vector :: operator =(vector && a) // move assignment
{

delete [] elem; // deallocate old space
elem = a.elem; // copy a’s elem and sz
sz = a.sz;
a.elem = nullptr; // make a the empty vector
a.sz = 0;
return *this; // return a self -reference (see par. 17.10)

}

26

Essential Operations

• Default constructor
• Constructors from one or more arguments

• Copy constructor (copy object of same type)
• Copy assignment (copy object of same type)
• Move constructor (move object of same type)
• Move assignment (move object of same type)
• Destructor

If you define one of these,
define them all

27

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

28

Arrays

Arrays don’t have to be on the free store

char ac[7]; // global array - "lives" forever - in static storage
int max = 100;
int ai[max];

int f(int n)
{

char lc[20]; // local array - "lives" until the end of scope - on stack
int li[60];
double lx[n]; // error: a local array size must be known at compile time

// vector <double > lx(n); would work
// ...

}

29

Address of &

You can get a pointer to any object
not just to objects on the free store

int a;
char ac[20];

void f(int n)
{

int b;
int* p = &b; // pointer to individual variable
p = &a; // now point to a different variable
char* pc = ac; // the name of an array names a pointer to its first element
pc = &ac[0]; // equivalent to pc = ac
pc = &ac[n]; // pointer to ac’s nth element (starting at 0th)

// warning: range is not checked
// ...

}

30

Arrays Convert to Pointers
void f(int pi[]) // equivalent to void f(int* pi)
{

int a[] = { 1, 2, 3, 4 };
int b[] = a; // error: copy isn’t defined for arrays
b = pi; // error: copy isn’t defined for arrays. Think of a

// (non -argument) array name as an immutable pointer
pi = a; // ok: but it doesn’t copy: pi now points to a’s first element

// Is this a memory leak? (maybe)
int* p = a; // p points to the first element of a
int* q = pi; // q points to the first element of a

}

1 2 3 4 :a

p:

q:

pi: 1st
2nd

Memory leak?

31

Arrays don’t Know Their Size

Warning: very dangerous code, for illustration only: never “hope” that sizes will always be correct

void f(char pc[], int n) // equivalent to void f(char* pc , int n)
{

char buf1 [200]; // you can’t say ‘char buf1[n];’ n is a variable
strcpy(buf1 ,pc); // copy characters from pc into buf1

// strcpy terminates when a ’\0’ character is found
// hope that pc holds less than 200 characters

// alternative that hedges against pc holding > 200 chars
strncpy(buf1 ,pc ,200); // copy 200 characters from pc to buf1

// padded if necessary , but final ’\0’ not guaranteed
}

Similarly:

void f(int pi[], int n) // equivalent to void f(int* pi, int n)
{

int buf2 [300]; // you can’t say ‘int buf2[n];’ n is a variable
if (300 < n) error("not enough space");
for (int i=0; i<n; ++i) buf2[i] = pi[i]; // hope that pi really has space for

// n ints; it might have less
}

32

Be Careful with Arrays and Pointers

Watch out on dangling pointers (pointers to deleted memory)

char* f()
{

char ch[20];
char* p = &ch[90];
// ...
*p = ’a’; // we don’t know what this will overwrite
char* q; // forgot to initialize
*q = ’b’; // we don’t know what this will overwrite
return &ch[10]; // oops: ch disappears upon return from f()

// (an infamous dangling pointer)
}

void g()
{

char* pp = f();
// ...
*pp = ’c’; // we don’t know what this will overwrite
// (f’s ch is gone for good after the return from f)

}

33

Why Bother with Arrays?

• It’s all that C has
• In particular, C does not have vector
• There is a lot of C code “out there”
• There is a lot of C++ code in C style “out there”
• You’ll eventually encounter code full of arrays and pointers

• They represent primitive memory in C++ programs
We need them (mostly on free store allocated by new) to implement better container types

• Avoid arrays whenever you can
• They are the largest single source of bugs in C and (unnecessarily) in C++ programs
• They are among the largest sources of security violations, usually (avoidable) buffer overflows

34

Recap: Types of Memory

vector glob (10); // global vector - ‘‘lives ’’ forever

vector* some_fct(int n)
{

vector v(n); // local vector - ‘‘lives ’’ until the end of scope
vector* p = new vector(n); // free -store vector - ‘‘lives ’’ until we delete it
// ...
return p;

}

void f()
{

vector* pp = some_fct (17);
// ...
delete pp; // deallocate the free -store vector allocated in some_fct ()

}

it’s easy to forget to delete free-store allocated objects
so avoid new/delete when you can (and that’s most of the time)

35

Vector: Primitive Access
A very simplified vector of doubles:
vector v(10);

Pretty ugly access:
for (int i=0; i<v.size (); ++i) {

v.set(i,i);
cout << v.get(i);

}

We’re used to this way of accessing:
for (int i=0; i<v.size (); ++i) {

v[i]=i;
cout << v[i];

}

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

elem:

10

sz:

36

Vector: Pointers for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
double* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double* operator[](int n) { return &elem[n]; } // access: return pointer

};

vector v(10);

Access via pointers:

for (int i=0; i<v.size (); ++i) {
*v[i] = i; // means *(v[i]), that is, return a pointer to

// the ith element , and dereference it
cout << *v[i];

}

It works, but still too ugly.

37

Vector: References for Access

A very simplified vector of doubles:

class vector {
int sz; // the size
tdouble* elem; // pointer to elements

public:
explicit vector(int s) :sz{s}, elem{new double[s]} { } // constructor
// ...
double& operator[](int n) { return elem[n]; } // access: return reference

};

vector v(10);

Access via references:

for (int i=0; i<v.size (); ++i) {
v[i] = i; // v[i] returns a reference to the ith element
cout << v[i];

}

It works and it looks right!!

38

Pointer and Reference
You can think of a reference as an automatically dereferenced immutable pointer, or as an
alternative name (alias) for an object

• Assignment to a pointer changes the pointer’s value

• Assignment to a reference changes the object referred to

• You cannot make a reference refer to a different object
int a = 10;
int* p = &a; // you need & to get a pointer
*p = 7; // assign to a through p

// you need ’*’ (or ’[]’) to get to what a pointer points to
int x1 = *p; // read ’a’ through ’p’

int& r = a; // ’r’ is an alias for ’a’
r = 9; // assign to ’a’ through ’r’
int x2 = r; // read ’a’ through ’r’

p = &x1; // you can make a pointer point to a different object
r = &x1; // error: you can’t change the value of a ’r’

39

Summary

1. Initialization

2. Copy

3. Move

4. Arrays

40

