
DM560

Introduction to Programming in C++

Types

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Data Types
Type safety
ComputationOutline

Most programming tasks involve manipulating data. We will:

• describe how to input and output data

• present the notion of a variable for holding data

• introduce the central notions of “Type” and “Type Safety”

2

Data Types
Type safety
ComputationOutline

1. Data Types

2. Type safety

3. Computation

3

Data Types
Type safety
ComputationOutline

1. Data Types

2. Type safety

3. Computation

4

Data Types
Type safety
ComputationInput and Output

// read first name:
#include "std_lib_facilities.h" // our course header
int main()
{

cout << "Please enter your first name (followed " << "by ’enter ’):\n";
string first_name;
cin >> first_name;
cout << "Hello , " << first_name << ’\n’;

}
// - note how several values can be output by a single statement
// - a statement that introduces a variable is called a declaration
// - a variable holds a value of a specified type
// - the final return 0; is optional in main()
// (but you may need to include it to pacify your compiler)

5

Data Types
Type safety
ComputationSource Files

*

Header

std_lib_facilities.h

Interfaces to libraries
(declarations)

Source file

myfile.cpp

#include “std_lib_facilities.h”
My code
My data
(definitions)

6

Data Types
Type safety
ComputationInput and type

• We read into a variable
Here, first_name

• A variable has a type
Here, string

• The type of a variable determines what operations we can do on it
– Here, cin>>first_name; reads characters until a whitespace character is seen (“a word”)
– White space: space, tab, newline, ...

7

Data Types
Type safety
ComputationString Input

// read first and second name:
int main()
{

cout << "please enter your first and second names\n";
string first;
string second;
cin >> first >> second;
// read two strings
string name = first + ’ ’ + second;
// concatenate strings
// separated by a space
cout << "Hello , "<< name << ’\n’;

}
// We left out here the line #include "std_lib_facilities.h" to save space and
// reduce distraction
// Don’t forget it in real code!
// Similarly , we leave out the Windows -specific keep_window_open ();

8

Data Types
Type safety
ComputationIntegers

// read name and age:
int main()
{

cout << "please enter your first name and age\n";
string first_name;
// string variable
int age;
// integer variable
cin >> first_name >> age; // read
cout << "Hello , " << first_name << " age " << age << ’\n’;

}

9

Data Types
Type safety
ComputationIntegers and Strings

Strings

• cin >> reads a word

• cout << writes

• + concatenates

• += s adds the string s at end

• ++ is an error

• - is an error

• ...

Integers and floating-point numbers

• cin >> reads a number

• cout << writes

• + adds

• += n increments by the int n

• ++ increments by 1

• - subtracts

• ...

The type of a variable determines which operations are valid and what their meanings are for that
type (that’s called overloading or operator overloading)

10

Data Types
Type safety
ComputationNames

A name in a C++ program

• Starts with a letter, contains letters, digits, and underscores (only)
x, number_of_elements, Fourier_transform, z2
Not names:

• 12x
• timetomarket
• main line

Do not start names with underscores: _foo
those are reserved for implementation and system entities

• Users can’t define names that are taken as keywords
E.g.:

• int
• if
• while
• double

11

Data Types
Type safety
ComputationNames

Choose meaningful names

• Abbreviations and acronyms can confuse people
mtbf, TLA, myw, nbv

• Short names can be meaningful
(only) when used conventionally:

• x is a local variable
• i is a loop index

• Don’t use overly long names
Ok:
partial_sum, element_count, staple_partition
Too long:
the_number_of_elements,
remaining_free_slots_in_the_symbol_table

12

Data Types
Type safety
ComputationSimple Arithmetic

// do a bit of very simple arithmetic:
int main()
{

cout << "please enter a floating -point number: "; // prompt for a number
double n; // floating -point variable
cin >> n;
cout << "n == " << n
<< "\nn+1 == " << n+1 // ’\n’ means ‘‘a newline ’’
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == " << n*n
<< "\nhalf of n == " << n/2
<< "\nsquare root of n == " << sqrt(n) // library function
<< ’\n’;

}

13

Data Types
Type safety
ComputationA Simple Computation

int main()
// inch to cm conversion
{

const double cm_per_inch = 2.54; // number of centimeters per inch
int length = 1; // length in inches
while (length != 0) // length == 0 is used to exit the program
{ // a compound statement (a block)

cout << "Please enter a length in inches: ";
cin >> length;
cout << length << "in. = "
<< cm_per_inch*length << "cm.\n";

}
}

A while-statement repeatedly executes until its condition becomes false

14

Data Types
Type safety
ComputationTypes and Literals

Built-in types Types Literals
Boolean bool true false
Character char ’a’, ’x’, ’4’, ’n’, ’$’
Integer int, short, long 0, 1, 123, -6, 034, 0xa3
Floating-point double and float 1.2, 13.345, .3, -0.54, 1.2e3, .3F

Standard-library types Types Literals
String string ‘‘asdf’’, ‘‘Howdy, all y’all!’’
Complex Numbers complex<Scalar> complex<double>(12.3,99)

complex<float>(1.3F)

If you need more details, see the book! (pages 66-67, 1077-1080)

15

Data Types
Type safety
ComputationTypes

• C++ provides a set of types called built-in types
E.g. bool, char, int, double

• C++ programmers can define new types called user-defined types
We’ll get to that eventually

• The C++ standard library provides a set of types
E.g. string, vector, complex
Technically, these are user-defined types
they are built using only facilities available to every user

16

Data Types
Type safety
ComputationDeclaration and Initialization

17

Data Types
Type safety
ComputationObjects

• An object is some memory that can hold a value of a given type

• A variable is a named object

• A declaration names an object

18

Data Types
Type safety
ComputationTypes and Objects

• type defines a set of possible values and a set of operations (for an object)

• object is some memory that holds a value of a given type

• value is a set of bits in memory interpreted according to a type

• literal is a value conforming a type

• variable is a named object

• declaration is a statement that gives a name to an object

• definition is a declaration that sets aside memory for an object

19

Data Types
Type safety
ComputationOutline

1. Data Types

2. Type safety

3. Computation

20

Data Types
Type safety
ComputationType Safety

• Language rule: type safety
Every object will be used only according to its type

• A variable will be used only after it has been initialized
• Only operations defined for the variable’s declared type will be applied
• Every operation defined for a variable leaves the variable with a valid value

• Ideal: static type safety
A program that violates type safety will not compile
The compiler reports every violation (in an ideal system)

• Ideal: dynamic type safety
If you write a program that violates type safety it will be detected at run time
 Some code (typically "the run-time system") detects every violation not found by the
compiler (in an ideal system)

21

Data Types
Type safety
ComputationType Safety

<0|handout:1->

• Type safety is a very big deal
Try very hard not to violate it
“when you program, the compiler is your best friend”
But it won’t feel like that when it rejects code you’re sure is correct

• C++ is not (completely) statically type safe
• No widely-used language is (completely) statically type safe
• Being completely statically type safe may interfere with your ability to express ideas

• C++ is not (completely) dynamically type safe
• Many languages are dynamically type safe
• Being completely dynamically type safe may interfere with the ability to express ideas and often

makes generated code bigger and/or slower

• Almost all of what you’ll be taught here is type safe
We’ll specifically mention anything that is not

22

Data Types
Type safety
ComputationAssignment and Increment

// changing the value of a variable
int a = 7; // a variable of type int called a

// initialized to the integer value 7

a = 9; // assignment: now change a’s value to 9

a = a+a; // assignment: now double a’s value

a += 2; // increment a’s value by 2

++a; // increment a’s value (by 1)

23

Data Types
Type safety
ComputationA type-safety violation

(“implicit narrowing”)

// Beware: C++ does not prevent you from trying to put a large value
// into a small variable (though a compiler may warn)

int main()
{

int a = 20000;
char c = a;
int b = c;
if (a != b) // != means ‘‘not equal ’’
cout << "oops!: " << a << "!=" << b << ’\n’;
else
cout << "Wow! We have large characters\n";

}

 Try it to see what value b gets on your machine

24

Data Types
Type safety
ComputationA Technical Detail

• In memory, everything is just bits; type is what gives meaning to the bits

(bits/binary) 01100001 is the int 97 is the char ’a’
(bits/binary) 01000001 is the int 65 is the char ’A’
(bits/binary) 00110000 is the int 48 is the char ’0’

char c = ’a’;
cout << c; // print the value of character c, which is a
int i = c;
cout << i; // print the integer value of the character c, which is 97

• This is just as in “the real world”:
What does “42” mean?
You don’t know until you know the unit used
Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? ...

25

Data Types
Type safety
ComputationA Type-safety Violation

Uninitialized variables

// Beware: C++ does not prevent you from trying to use a variable
// before you have initialized it (though a compiler typically warns)

int main()
{

int x; // x gets a ’random ’ initial value
char c; // c gets a ’random ’ initial value
double d; // d gets a ’random ’ initial value

// not every bit pattern is a valid floating -point value
double dd = d; // potential error: some implementations

// can’t copy invalid floating -point values
cout << " x: " << x << " c: " << c << " d: " << d << ’\n’;

}

 Always initialize your variables – beware: ’debug mode’ may initialize (valid exception to this
rule: input variable)

26

Data Types
Type safety
ComputationAbout Efficiency

• For now, don’t worry about efficiency
Concentrate on correctness and simplicity of code

• C++ is derived from C, which is a systems programming language
• C++’s built-in types map directly to computer main memory

a char is stored in a byte
an int is stored in a word
a double fits in a floating-point register

• C++’s built-in operations map directly to machine instructions
an integer + is implemented by an integer add operation
an integer = is implemented by a simple copy operation

• C++ provides direct access to most of the facilities provided by modern hardware

• C++ help users build safer, more elegant, and efficient new types and operations using built-in
types and operations.
E.g., string
Eventually, we’ll show some of how that’s done

27

Data Types
Type safety
ComputationAnother Simple Computation

// inch to cm and cm to inch conversion:

int main()
{

const double cm_per_inch = 2.54;
int val;
char unit;
while (cin >> val >> unit) { // keep reading

if (unit == ’i’) // ’i’ for inch
cout << val << "in == " << val*cm_per_inch << "cm\n";

else if (unit == ’c’) // ’c’ for cm
cout << val << "cm == " << val/cm_per_inch << "in\n";

else
return 0; // terminate on a ’bad unit ’, e.g. ’q’

}
}

28

Data Types
Type safety
ComputationC++14 Hint

You can use the type of an initializer as the type of a variable

// ’auto’ means ’the type of the initializer ’
auto x = 1; // 1 is an int , so x is an int
auto y = ’c’; // ’c’ is a char , so y is a char
auto d = 1.2; // 1.2 is a double , so d is a double

auto s = ‘‘Howdy’’; // ‘‘Howdy ’’ is a string literal of type const char[]
// so don’t do that until you know what it means!

auto sq = sqrt (2); // sq is the right type for the result of sqrt (2)
// and you don’t have to remember what that is

auto duh; // error: no initializer for auto

30

Data Types
Type safety
ComputationOutline

1. Data Types

2. Type safety

3. Computation

31

Data Types
Type safety
ComputationOverview

In this unit, we learn the basics of computation:

• Computation
• What is computable? How best to compute it?
• Abstractions, algorithms, heuristics, data structures

• Language constructs and ideas
• Sequential order of execution

• Expressions and Statements

• Iteration: how to iterate over a series of values

• Selection: how to select between alternative actions

• Function: how a particular sub-computation can be named and specified separately

• To be able to perform more realistic computations, we will introduce the vector type to hold
sequences of values.

32

Data Types
Type safety
ComputationYou already know most of this

Note:

• You know how to do arithmetic
d = a+ b · c

• You know how to select
“if this is true, do that; otherwise do something else “

• You know how to iterate
“do this until you are finished”
“do that 100 times”

• You know how to do functions
“go ask Joe and bring back the answer” “hey Joe, calculate this for me and send me the
answer”

What we will see here is mostly just vocabulary and syntax for what you already know
33

Data Types
Type safety
ComputationComputation

• Input: from keyboard, files, other input devices, other programs, other parts of a program

• Computation – what our program will do with the input to produce the output.

• Output: to screen, files, other output devices, other programs, other parts of a program

34

Data Types
Type safety
ComputationComputation

• Our job is to express computations
Correctly, Simply, Efficiently

• One tool is called Divide and Conquer
to break up big computations into many little ones

• Another tool is Abstraction
provide a higher-level concept that hides detail

• Organization of data is often the key to good code
• Input/output formats
• Protocols
• Data structures

Note the emphasis on structure and organization
You don’t get good code just by writing a lot of statements

35

Data Types
Type safety
ComputationLanguage Features

• Each programming language feature exists to express a fundamental idea
For example:

• +: addition
• *: multiplication
• if (expression) statement else statement; selection
• while (expression) statement; iteration
• f(x) function/operation
• ...

• We combine language features to create programs

36

Data Types
Type safety
ComputationExpressions

// compute area:
int length = 20; // the simplest expression: a literal (here , 20)

// (here used to initialize a variable)
int width = 40;
int area = length*width; // a multiplication
int average = (length+width)/2; // addition and division

• The usual rules of precedence apply:
a*b+c/d means (a*b)+(c/d) and not a*(b+c)/d.

• If in doubt, parenthesize. If complicated, parenthesize.

• Don’t write “absurdly complicated” expressions:
a*b+c/d*(e-f/g)/h+7 //too complicated

• Choose meaningful names
37

Data Types
Type safety
ComputationExpressions

• Expressions are made out of operators and operands
Operators specify what is to be done
Operands specify the data for the operators to work with

• Boolean type: bool (true and false)
Equality operators: == (equal), != (not equal)
Logical operators: && (and), || (or), ! (not)
Relational operators: < (less than), > (greater than), <=, >=

• Character type: char (e.g., ’a’, ’7’, and ’@’)

• Integer types: short, int, long
arithmetic operators: +, -, *, /, % (remainder)

• Floating-point types: e.g., float, double (e.g., 12.45 and 1.234e3)
arithmetic operators: +, -, *, /

38

Data Types
Type safety
ComputationConcise Operations

For many binary operators, there are (roughly) equivalent more concise operators

For example:
a += c means a = a+c
a *= scale means a = a*scale
++a means a += 1 or a = a+1

Concise operators are generally better to use (clearer, express an idea more directly)

39

Data Types
Type safety
ComputationStatements

A statement is
• an expression followed by a semicolon, or
• a declaration, or
• a control statement that determines the flow of control

For example:

a = b;
double d2 = 2.5;
if (x == 2) y = 4;
while (cin >> number) numbers.push_back(number);
int average = (length+width)/2;
return x;

You may not understand all of these just now, but you will ...

40

Data Types
Type safety
ComputationSelection

Sometimes we must select between alternatives

For example, suppose we want to identify the larger of two values. We can do this with an if
statement

if (a<b) // Note: No semicolon here
max = b;

else // Note: No semicolon here
max = a;

The syntax is

if (condition)
statement_1 // if the condition is true , do statement_1

else
statement_2 // if not , do statement_2

41

Data Types
Type safety
ComputationIteration (while loop)

The world’s first “real program” running on a stored-program computer (David Wheeler,
Cambridge, May 6, 1949)

// calculate and print a table of squares 0-99:
int main()
{

int i = 0;
while (i<100) {

cout << i << ’\t’ << square(i) << ’\n’;
++i ; // increment i

}
}
// (No, it wasn’t actually written in C++.)

42

Data Types
Type safety
ComputationIteration (while loop)

What it takes

A loop variable (control variable) here: i
Initialize the control variable; here: int i = 0
A termination criterion; here: if i<100 is false, terminate
Increment the control variable; here: ++i
Something to do for each iteration; here: cout <<

int i = 0;
while (i<100) {

cout << i << ’\t’ << square(i) << ’\n’;
++i ; // increment i

}

43

Data Types
Type safety
ComputationIteration (for loop)

Another iteration form: the for loop

You can collect all the control information in one place, at the top, where it’s easy to see:

for (int i = 0; i <100; ++i) {
cout << i << ’\t’ << square(i) << ’\n’;

}

That is,

for (initialize; condition ; increment)

controlled statement

Note: what is square(i)?

44

Data Types
Type safety
ComputationFunctions

What was square(i)?

• A call of the function square()

int square(int x)
{

return x*x;
}

• We define a function when we want to separate a computation because it
• is logically separated
• makes the program text clearer (by naming the computation)
• is useful in more than one place in our program
• eases testing, distribution of labor, and maintenance

45

Data Types
Type safety
ComputationControl Flow

46

Data Types
Type safety
ComputationFunctions

Our function

int square(int x)
{

return x*x;
}

is an example of

Return_type function_name (Parameter list) // (type name , etc.)
{

// use each parameter in code
return some_value; // of Return_type

}

47

Data Types
Type safety
ComputationAnother Example

Earlier we looked at code to find the larger of two values. Here is a function that compares the two
values and returns the larger value.

int max(int a, int b) // this function takes 2 parameters
{

if (a<b)
return b;

else
return a;

}

int x = max(7, 9); // x becomes 9
int y = max(19, -27); // y becomes 19
int z = max(20, 20); // z becomes 20

48

Data Types
Type safety
ComputationData for Iteration – Vector

To do just about anything of interest, we need a collection of data to work on. We can store this
data in a vector.
For example:

// read some temperatures into a vector:
int main()
{

vector <double > temps; // declare a vector of type double to store temperatures
double temp; // a variable for a single temperature value
while (cin >>temp) // cin reads a value and stores it in temp

temps.push_back(temp); // store the value of temp in the vector
// ... do something ...

}
// cin >>temp will return true until we reach the end of file or encounter
// something that isn’t a double: like the word "end"

49

Data Types
Type safety
ComputationVector

Vector is the most useful standard library data type
• a vector<T> holds a sequence of values of type T
• Think of a vector this way
A vector named v contains 5 elements: {1, 4, 2, 3, 5}:

50

Data Types
Type safety
ComputationVectors

51

Data Types
Type safety
ComputationVectors

Once you get your data into a vector you can easily manipulate it

// compute mean (average) and median temperatures:
int main()
{

vector <double > temps; // temperatures in Fahrenheit , e.g. 64.6
double temp;
while (cin >>temp) temps.push_back(temp); // read and put into vector

double sum = 0;
for (int i = 0; i< temps.size (); ++i) sum += temps[i]; // sums temperatures

cout << "Mean temperature: " << sum/temps.size() << ’\n’;
sort(temps); // from std_lib_facilities.h
// or sort(temps.begin(), temps.end ());
cout << "Median temperature: " << temps[temps.size ()/2] << ’\n’;

}

52

Data Types
Type safety
ComputationTraversing a Vector

Once you get your data into a vector you can easily manipulate it
Initialize with a list:

vector <int > v = { 1, 2, 3, 5, 8, 13 }; // initialize with a list

Often we want to look at each element of a vector in turn:

for (int i = 0; i< v.size (); ++i) cout << v[i] << ’\n’; // list all elements

// there is a simpler kind of loop for that (a range-for loop):
for (int x : v) cout << x << ’\n’; // list all elements
// for each x in v ...

53

Data Types
Type safety
ComputationCombining Language Features

You can write many new programs by combining language features, built-in types, and user-defined
types in new and interesting ways.

So far, we have:
• Variables and literals of types bool, char, int, double
• vector, push_back(), [] (subscripting)
• !=, ==, =, +, -, +=, <, &&, ||, !
• max(), sort(), cin>>, cout<<
• if, for, while

You can write a lot of different programs with these language features!
Let’s try to use them in a slightly different way...

54

Data Types
Type safety
ComputationExample – Word List

// preliminaries left out

vector <string > words;
for (string s; cin >>s && s != "quit";) // && means AND

words.push_back(s);

sort(words); // sort the words we read

for (string s : words)
cout << s << ’\n’;

/*
read a bunch of strings into a vector of strings , sort
them into lexicographical order (alphabetical order),
and print the strings from the vector to see what we have.

*/

55

Data Types
Type safety
ComputationExample – Word List

Eliminate Duplicates

// Note that duplicate words were printed multiple times. For
// example "the the the". That’s tedious , let’s eliminate duplicates:

vector <string > words;
for (string s; cin >>s && s!= "quit";)

words.push_back(s);

sort(words);

for (int i=1; i<words.size (); ++i)
if(words[i-1]== words[i])

get rid of words[i] // (pseudocode)
for (string s : words)

cout << s << ’\n’;

// there are many ways to get rid of words[i]; many of them are messy
// (that’s typical). Our job as programmers is to choose a simple clean
// solution - given constraints - time , run -time , memory.

56

Data Types
Type safety
ComputationExample – Word List

Eliminate Duplicates (cntd)

// Eliminate the duplicate words by copying only unique words:
vector <string > words;
for (string s; cin >>s && s!= "quit";)

words.push_back(s);

sort(words);

vector <string > w2;
if (0<words.size ()) { // note style { }

w2.push_back(words [0]);
for (int i=1; i<words.size (); ++i) // note: not a range -for

if(words[i-1]!= words[i])
w2.push_back(words[i]);

}

cout << "found " << words.size()-w2.size() << " duplicates\n";
for (string s : w2)

cout << s << "\n";

57

Data Types
Type safety
ComputationAlgorithms

• We just used a simple algorithm

• An algorithm is (from Google search)
"a logical arithmetical or computational procedure that, if correctly applied, ensures
the solution of a problem.-- Harper Collins

"a set of rules for solving a problem in a finite number of steps, as for finding the
greatest common divisor.-- Random House

"a detailed sequence of actions to perform or accomplish some task. Named after an
Iranian mathematician, Al-Khawarizmi. Technically, an algorithm must reach a result
after a finite number of steps. [...] The term is also used loosely for any sequence of
actions (which may or may not terminate).” – Webster’s

• We eliminated the duplicates by first sorting the vector (so that duplicates are adjacent), and
then copying only strings that differ from their predecessor into another vector.

58

Data Types
Type safety
ComputationIdeal

Basic language features and libraries should be usable in essentially arbitrary combinations.

• We are not too far from that ideal.

• If a combination of features and types make sense, it will probably work.

• The compiler helps by rejecting some absurdities.

59

Data Types
Type safety
ComputationOutline

1. Data Types

2. Type safety

3. Computation

60

	Data Types
	Type safety
	Computation

