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Functions
NamespacesC++ Users: CERN’s Higgs Boson Hunt

(2012) Higgs boson found! In email from CERN:

"all related computing done in C++."

and a follow-up from Fermilab:
"The reports are correct, almost all significant computing done for high energy physics
(and not only the LHC) is done in C++. And many (though not all) experiments are now
in the process of migrating to the use of C++11."

Sources:
• The Big Data Software Problem Behind CERN’s Higgs Boson Hunt
• Root a data analysis framework based on C++ https://root.cern.ch//
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https://www.youtube.com/watch?v=3SdSKZFoUa8
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Goals:

• broaden the view of C++’s basic facilities (types, functions, and initialization)

• provide a more systematic view of those facilities.

Contents:
• Language Technicalities
• Declarations

• Definitions
• Headers and the preprocessor
• Scope

• Functions
• Declarations and definitions
• Arguments
• Call by value, reference, and const reference

• Namespaces
using declarations

5



Declarations and Definitions
Scopes
Functions
NamespacesLanguage Technicalities

• They are like the vocabulary and the grammar in a foreign language

• In a formal language the rules governing the composition of well-formed expressions are
referred to as syntax

• We need to learn them because programs must be precisely and completely specified
• A computer is a very stupid (though very fast) machine
• A computer can’t guess what you “really meant to say” (and shouldn’t try to)

• However, here, we will look at only some of the C++ rules:
(the C++14 standard is 1,358 pages)

6



Declarations and Definitions
Scopes
Functions
NamespacesLanguage Technicalities

But! Don’t spend your time on minor syntax and semantic issues

 Remember: we study programming concepts, the programming language is only a tool.

• Most design and programming concepts are universal, or at least very widely supported by
popular programming languages
So what you learn using C++ you can use with many other languages

• Language technicalities are specific to a given language
But many of the technicalities from C++ presented here have obvious counterparts in C, Java,
C#, etc.

• Moreover, there is more than one way to say everything
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A name must be declared before it can be used in a C++ program.

• A declaration introduces a name into a scope.

• A declaration also specifies a type for the named object.

• Sometimes a declaration includes an initializer.

Examples:

int a = 7; // an int variable named ’a’ is declared
const double cd = 8.7; // a double -precision floating -point constant
double sqrt(double ); // a function taking a double argument and

// returning a double result
vector <Token > v; // a vector variable of Tokens (variable)
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A header is a file containing declarations providing an interface to other parts of a program

• Declarations are frequently introduced into a program through headers

• This allows for abstraction—you don’t have to know the details of a function like cout in
order to use it.
When you add:

#include "std_lib_facilities.h"

to your code, the declarations in the file std_lib_facilities.h become available (including
cout, etc.).
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At least three errors:

int main()
{

cout << f(i) << ’\n’;
}

Add declarations:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int main()
{

cout << f(i) << ’\n’;
}
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Define your own functions and variables:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int f(int x ) { /* ... */ } // declaration of f

int main()
{

int i = 7; // declaration of i
cout << f(i) << ’\n’;

}

12



Declarations and Definitions
Scopes
Functions
NamespacesDefinitions

A definition is a declaration that (also) fully specifies the entity declared

Examples:

int a = 7;
int b; // an (uninitialized) int
vector <double > v; // an empty vector of doubles
double sqrt(double) { ... }; // a function with a body
struct Point { int x; int y; };

Examples of declarations that are not definitions

double sqrt(double ); // function body missing
struct Point; // class members specified elsewhere
extern int a; // extern means "not definition"

// "extern" is archaic; we will hardly use it
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• You cannot define something twice.
A definition says what something is.

Examples
int a; // definition
int a; // error: double definition
double sqrt(double d) { ... } // definition
double sqrt(double d) { ... } // error: double definition

• You can declare something twice
A declaration says how something can be used

Example:
int a = 7; // definition (also a declaration)
extern int a; // declaration
double sqrt(double ); // declaration
double sqrt(double d) { ... } // definition (also a declaration)
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• To refer to something, we need (only) its declaration

• Often we want the definition "elsewhere"
Later in a file, in another file possibly written by someone else

• Declarations are used to specify interfaces:
to your own code, and to libraries
 Libraries are key: we can’t write all ourselves, and wouldn’t want to

• In larger programs, place all declarations in header files to ease sharing
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The most interesting are

• Variables
int x;
vector<int> vi2 {1,2,3,4};

• Constants
void f(const X&);
constexpr int i = sqrt(2);

• Functions
double sqrt(double d) { /*... */}

• Namespaces

• Types (classes and enumerations)

• Templates (see Chapter 19)
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• A header is a file that holds declarations of functions, types, constants, and other program
components.

• The construct

#include "std_lib_facilities.h"

is a preprocessor directive that adds declarations to your program
Typically, the header file is simply a text (source code) file

• A header gives you access to functions, types, etc. that you want to use in your programs.
• Usually, you don’t really care about how they are written.
• The actual functions, types, etc. are defined in other source code files
• Often as part of libraries
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tokenize.h

// declarations:
class Token { ... };
class Token_stream {
Token get();
...
};
extern Token_stream ts;
...

B

tokenize.cpp

#include “tokenize.h”
// definitions:
Token Token_stream::get()
{ /* ... */ }
Token_stream ts;
...

C

use.cpp

#include "token.h"
...
Token t = ts.get();
...

A header file defines an
interface between user code
and implementation code
(usually in a library)

The same #include
declarations in both
.cpp files (definitions

and uses) ease
consistency checking
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A common use of preprocessor is to avoid reading files more than once:

#ifndef MY_TOKENIZE_H
#define MY_TOKENIZE_H

/* here the header information */
#endif

These directives are called macros

#ifdef WINDOWS
#include ‘‘my_windows_header.h’’

#else
#include ‘‘my_linux_header.h’’

#endif

19



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

20



Declarations and Definitions
Scopes
Functions
NamespacesScope

• A scope is a region of program text
• Global scope (outside any language construct)
• Class scope (within a class)
• Local scope (between { ... } braces)
• Statement scope (e.g. in a for-statement)

• A name in a scope can be seen from within its scope and within scopes nested within that
scope

• Only after the declaration of the name (“can’t look ahead” rule)
• Class members can be used within the class before they are declared

• A scope keeps “things” local
• Prevents one’s variables, functions, etc., from interfering with others’

Remember: real programs have many thousands of entities
• Locality is good! Keep names as local as possible
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#include "std_lib_facilities.h" // get max and abs from here
// no r, i, or v here
class My_vector {

vector <int > v; // v is in class scope
public:

int largest () // largest is in class scope
{

int r = 0; // r is local
for (int i = 0; i<v.size (); ++i) // i is in statement scope

r = max(r,abs(v[i]));
// no i here
return r;

}
// no r here

};
// no v here
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int x; // global variable - avoid those where you can
int y; // another global variable

int f()
{

int x; // local variable (Note - now there are two x’s)
x = 7; // local x, not the global x
{

int x = y; // another local x, initialized by the global y
// (Now there are three x’s)

++x; // increment the local x in this scope
}

}

Avoid such complicated nesting and hiding: keep it simple!
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• Chop a program into manageable pieces
“divide and conquer”

• Match our understanding of the problem domain
• Name logical operations
• A function should do one thing well

• Functions make the program easier to read

• A function can be useful in many places in a program

• Ease testing, distribution of labor, and maintenance

• Keep functions small
Easier to understand, specify, and debug
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• General form:
return_type name (formal arguments ); // a declaration
return_type name (formal arguments) body // a definition

For example:
double f(int a, double d) { return a*d; }

• Formal arguments are often called parameters

• If you don’t want to return a value give void as the return type
void increase_power_to(int level);

Here, void means “doesn’t return a value”

• A body is a block or a try block
For example
{ /* code */ } // a block
try { /* code */ } catch(exception& e) { /* code */ } // a try block

• Functions represent/implement computations/calculations
26
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call-by-value ≡ send the function a copy of the argument’s value

int f(int a) { a = a+1; return a; }

int main()
{

int xx = 0;
cout << f(xx) << ’\n’; // writes 1
cout << xx << ’\n’; // writes 0; f() doesn’t change xx
int yy = 7;
cout << f(yy) << ’\n’; // writes 8; f() doesn’t change yy
cout << yy << ’\n’; // writes 7

}

0

0

xx:

a:
copy the value

7

7

yy:

a:
copy the value
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call-by-reference ≡ pass a reference to the argument

int f(int& a) { a = a+1; return a; }

int main()
{

int xx = 0;
cout << f(xx) << ’\n’; // writes 1

// f() changed the value of xx
cout << xx << ’\n’; // writes 1
int yy = 7;
cout << f(yy) << ’\n’; // writes 8

// f() changes the value of yy
cout << yy << ’\n’; // writes 8

}

0

0

a:

xx:

yy:

1st call (refer to xx)

2nd call (refer to yy)
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• Avoid (non-const) reference arguments when you can
They can lead to obscure bugs when you forget which arguments can be changed

int incr1(int a) { return a+1; }
void incr2(int& a) { ++a; }
int x = 7;
x = incr1(x); // pretty obvious
incr2(x); // pretty obscure

• So why have reference arguments?
• Occasionally, they are essential

E.g., for changing several values
For manipulating containers (e.g., vector)

• const reference arguments are very often useful
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void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()
{

int x = 0;
int y = 0;
int z = 0;
g(x,y,z); // x==0; y==1; z==0
g(1,2,3); // error: reference argument r needs a variable to refer to
g(1,y,3); // ok: since cr is const we can pass ‘‘a temporary ’’

}

const references are very useful for passing large objects
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• reference is a general concept
Not just for call-by-reference

int i = 7;
int& r = i;
r = 9; // i becomes 9
const int& cr = i;
// cr = 7; // error: cr refers to const
i = 8;
cout << cr << endl; // write out the value of i (that’s 8)

• You can
think of a reference as an alternative name for an object

• You can’t
modify an object through a const reference
make a reference refer to another object after initialization

7

r:

cr:

i:
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A range-for loop:

for (string s : v) cout << s << ’\n’; // s is a copy of some v[i]
for (string& s : v) cout << s << ’\n’; // no copy
for (const string& s : v) cout << s << ’\n’; // and we don’t modify v
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You can define functions that can be evaluated at compile time: constexpr functions

constexpr double xscale = 10; // scaling factors
constexpr double yscale = .8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };

constexpr Point x = scale ({123 ,456}); // evaluated at compile time

void use(Point p)
{

constexpr Point x1 = scale(p); // error: compile -time evaluation
// requested for variable argument

Point x2 = scale(p); // OK: run -time evaluation
}

Note: these functions must be very simple, just a return statement.
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• Use call-by-value for very small objects

• Use call-by-const-reference for large objects

• Use call-by-reference only when you have to

• Return a result rather than modify an object through a reference argument

For example:

class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image ); // oops: this could be s-l-o-o-o-w
void f(Image& i); ... f(my_image ); // no copy , but f() can modify my_image
void f(const Image &); ... f(my_image ); // f() won’t mess with my_image
Image make_image (); // most likely fast! (‘‘move semantics ’’ - later)
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Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; // in Jack’s header file jack.h
class Widget { /*...*/ }; // also in jack.h

class Blob { /*...*/ }; // in Jill’s header file jill.h
class Widget { /*...*/ }; // also in jill.h

#include "jack.h"; // this is in your code
#include "jill.h"; // so is this

void my_func(Widget p) // oops! - error: multiple definitions of Widget
{

// ...
}
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• The compiler will not compile multiple definitions; such clashes can occur from multiple
headers.

• One way to prevent this problem is with namespaces:

namespace Jack { // in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

}

#include "jack.h"; // this is in your code
#include "jill.h"; // so is this

void my_func(Jack:: Widget p) // OK, Jack’s Widget class will not
{ // clash with a different Widget

// ...
}
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• A namespace is a named scope

• The :: syntax is used to specify which namespace we are using and which (of many possible)
objects of the same name we are referring to

• For example, cout is in namespace std, we could write:

std::cout << "Please enter stuff ... \n";
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• To avoid the tedium of

std::cout << "Please enter stuff ... \n";

• you could write a using declaration

using std::cout; // when I say cout , I mean std::cout
cout << "Please enter stuff ... \n"; // ok: std::cout
cin >> x; // error: cin not in scope

• or you could write a using directive

using namespace std; // ‘‘make all names from namespace std available ’’
cout << "Please enter stuff ... \n"; // ok: std::cout
cin >> x; // ok: std::cin

• More about header files in chapter 12
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