
DM560

Introduction to Programming in C++

Technicalitis:
Scopes, Functions, Namespaces

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

2



Declarations and Definitions
Scopes
Functions
NamespacesC++ Users: CERN’s Higgs Boson Hunt

(2012) Higgs boson found! In email from CERN:

"all related computing done in C++."

and a follow-up from Fermilab:
"The reports are correct, almost all significant computing done for high energy physics
(and not only the LHC) is done in C++. And many (though not all) experiments are now
in the process of migrating to the use of C++11."

Sources:
• The Big Data Software Problem Behind CERN’s Higgs Boson Hunt
• Root a data analysis framework based on C++ https://root.cern.ch//

3

https://root.cern.ch//


Declarations and Definitions
Scopes
Functions
NamespacesC++ Users: Mars Rover

https://www.youtube.com/watch?v=3SdSKZFoUa8

4

https://www.youtube.com/watch?v=3SdSKZFoUa8


Declarations and Definitions
Scopes
Functions
NamespacesOverview

Goals:

• broaden the view of C++’s basic facilities (types, functions, and initialization)

• provide a more systematic view of those facilities.

Contents:
• Language Technicalities
• Declarations

• Definitions
• Headers and the preprocessor
• Scope

• Functions
• Declarations and definitions
• Arguments
• Call by value, reference, and const reference

• Namespaces
using declarations

5



Declarations and Definitions
Scopes
Functions
NamespacesLanguage Technicalities

• They are like the vocabulary and the grammar in a foreign language

• In a formal language the rules governing the composition of well-formed expressions are
referred to as syntax

• We need to learn them because programs must be precisely and completely specified
• A computer is a very stupid (though very fast) machine
• A computer can’t guess what you “really meant to say” (and shouldn’t try to)

• However, here, we will look at only some of the C++ rules:
(the C++14 standard is 1,358 pages)

6



Declarations and Definitions
Scopes
Functions
NamespacesLanguage Technicalities

But! Don’t spend your time on minor syntax and semantic issues

 Remember: we study programming concepts, the programming language is only a tool.

• Most design and programming concepts are universal, or at least very widely supported by
popular programming languages
So what you learn using C++ you can use with many other languages

• Language technicalities are specific to a given language
But many of the technicalities from C++ presented here have obvious counterparts in C, Java,
C#, etc.

• Moreover, there is more than one way to say everything

7



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

8



Declarations and Definitions
Scopes
Functions
NamespacesDeclarations

A name must be declared before it can be used in a C++ program.

• A declaration introduces a name into a scope.

• A declaration also specifies a type for the named object.

• Sometimes a declaration includes an initializer.

Examples:

int a = 7; // an int variable named ’a’ is declared
const double cd = 8.7; // a double -precision floating -point constant
double sqrt(double ); // a function taking a double argument and

// returning a double result
vector <Token > v; // a vector variable of Tokens (variable)

9



Declarations and Definitions
Scopes
Functions
NamespacesDeclarations

A header is a file containing declarations providing an interface to other parts of a program

• Declarations are frequently introduced into a program through headers

• This allows for abstraction—you don’t have to know the details of a function like cout in
order to use it.
When you add:

#include "std_lib_facilities.h"

to your code, the declarations in the file std_lib_facilities.h become available (including
cout, etc.).

10



Declarations and Definitions
Scopes
Functions
NamespacesExamples

At least three errors:

int main()
{

cout << f(i) << ’\n’;
}

Add declarations:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int main()
{

cout << f(i) << ’\n’;
}

11



Declarations and Definitions
Scopes
Functions
NamespacesExamples

Define your own functions and variables:

#include "std_lib_facilities.h" // we find the declaration of cout in here

int f(int x ) { /* ... */ } // declaration of f

int main()
{

int i = 7; // declaration of i
cout << f(i) << ’\n’;

}

12



Declarations and Definitions
Scopes
Functions
NamespacesDefinitions

A definition is a declaration that (also) fully specifies the entity declared

Examples:

int a = 7;
int b; // an (uninitialized) int
vector <double > v; // an empty vector of doubles
double sqrt(double) { ... }; // a function with a body
struct Point { int x; int y; };

Examples of declarations that are not definitions

double sqrt(double ); // function body missing
struct Point; // class members specified elsewhere
extern int a; // extern means "not definition"

// "extern" is archaic; we will hardly use it

13



Declarations and Definitions
Scopes
Functions
NamespacesDeclarations and Definitions

• You cannot define something twice.
A definition says what something is.

Examples
int a; // definition
int a; // error: double definition
double sqrt(double d) { ... } // definition
double sqrt(double d) { ... } // error: double definition

• You can declare something twice
A declaration says how something can be used

Example:
int a = 7; // definition (also a declaration)
extern int a; // declaration
double sqrt(double ); // declaration
double sqrt(double d) { ... } // definition (also a declaration)

14



Declarations and Definitions
Scopes
Functions
NamespacesWhy both Declarations and Definitions?

• To refer to something, we need (only) its declaration

• Often we want the definition "elsewhere"
Later in a file, in another file possibly written by someone else

• Declarations are used to specify interfaces:
to your own code, and to libraries
 Libraries are key: we can’t write all ourselves, and wouldn’t want to

• In larger programs, place all declarations in header files to ease sharing

15



Declarations and Definitions
Scopes
Functions
NamespacesKinds of Declarations

The most interesting are

• Variables
int x;
vector<int> vi2 {1,2,3,4};

• Constants
void f(const X&);
constexpr int i = sqrt(2);

• Functions
double sqrt(double d) { /*... */}

• Namespaces

• Types (classes and enumerations)

• Templates (see Chapter 19)
16



Declarations and Definitions
Scopes
Functions
NamespacesHeader files and Preprocessor

• A header is a file that holds declarations of functions, types, constants, and other program
components.

• The construct

#include "std_lib_facilities.h"

is a preprocessor directive that adds declarations to your program
Typically, the header file is simply a text (source code) file

• A header gives you access to functions, types, etc. that you want to use in your programs.
• Usually, you don’t really care about how they are written.
• The actual functions, types, etc. are defined in other source code files
• Often as part of libraries

17



Declarations and Definitions
Scopes
Functions
NamespacesSource Files A

tokenize.h

// declarations:
class Token { ... };
class Token_stream {
Token get();
...
};
extern Token_stream ts;
...

B

tokenize.cpp

#include “tokenize.h”
// definitions:
Token Token_stream::get()
{ /* ... */ }
Token_stream ts;
...

C

use.cpp

#include "token.h"
...
Token t = ts.get();
...

A header file defines an
interface between user code
and implementation code
(usually in a library)

The same #include
declarations in both
.cpp files (definitions

and uses) ease
consistency checking

18



Declarations and Definitions
Scopes
Functions
NamespacesConditional Compilation

A common use of preprocessor is to avoid reading files more than once:

#ifndef MY_TOKENIZE_H
#define MY_TOKENIZE_H

/* here the header information */
#endif

These directives are called macros

#ifdef WINDOWS
#include ‘‘my_windows_header.h’’

#else
#include ‘‘my_linux_header.h’’

#endif

19



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

20



Declarations and Definitions
Scopes
Functions
NamespacesScope

• A scope is a region of program text
• Global scope (outside any language construct)
• Class scope (within a class)
• Local scope (between { ... } braces)
• Statement scope (e.g. in a for-statement)

• A name in a scope can be seen from within its scope and within scopes nested within that
scope

• Only after the declaration of the name (“can’t look ahead” rule)
• Class members can be used within the class before they are declared

• A scope keeps “things” local
• Prevents one’s variables, functions, etc., from interfering with others’

Remember: real programs have many thousands of entities
• Locality is good! Keep names as local as possible

21



Declarations and Definitions
Scopes
Functions
NamespacesScope

#include "std_lib_facilities.h" // get max and abs from here
// no r, i, or v here
class My_vector {

vector <int > v; // v is in class scope
public:

int largest () // largest is in class scope
{

int r = 0; // r is local
for (int i = 0; i<v.size (); ++i) // i is in statement scope

r = max(r,abs(v[i]));
// no i here
return r;

}
// no r here

};
// no v here

22



Declarations and Definitions
Scopes
Functions
NamespacesScopes Nest

int x; // global variable - avoid those where you can
int y; // another global variable

int f()
{

int x; // local variable (Note - now there are two x’s)
x = 7; // local x, not the global x
{

int x = y; // another local x, initialized by the global y
// (Now there are three x’s)

++x; // increment the local x in this scope
}

}

Avoid such complicated nesting and hiding: keep it simple!

23



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

24



Declarations and Definitions
Scopes
Functions
NamespacesRecap: Why Functions?

• Chop a program into manageable pieces
“divide and conquer”

• Match our understanding of the problem domain
• Name logical operations
• A function should do one thing well

• Functions make the program easier to read

• A function can be useful in many places in a program

• Ease testing, distribution of labor, and maintenance

• Keep functions small
Easier to understand, specify, and debug

25



Declarations and Definitions
Scopes
Functions
NamespacesFunctions

• General form:
return_type name (formal arguments ); // a declaration
return_type name (formal arguments) body // a definition

For example:
double f(int a, double d) { return a*d; }

• Formal arguments are often called parameters

• If you don’t want to return a value give void as the return type
void increase_power_to(int level);

Here, void means “doesn’t return a value”

• A body is a block or a try block
For example
{ /* code */ } // a block
try { /* code */ } catch(exception& e) { /* code */ } // a try block

• Functions represent/implement computations/calculations
26



Declarations and Definitions
Scopes
Functions
NamespacesFunctions: Call by Value

call-by-value ≡ send the function a copy of the argument’s value

int f(int a) { a = a+1; return a; }

int main()
{

int xx = 0;
cout << f(xx) << ’\n’; // writes 1
cout << xx << ’\n’; // writes 0; f() doesn’t change xx
int yy = 7;
cout << f(yy) << ’\n’; // writes 8; f() doesn’t change yy
cout << yy << ’\n’; // writes 7

}

0

0

xx:

a:
copy the value

7

7

yy:

a:
copy the value

27



Declarations and Definitions
Scopes
Functions
NamespacesFunctions: Call by Reference

call-by-reference ≡ pass a reference to the argument

int f(int& a) { a = a+1; return a; }

int main()
{

int xx = 0;
cout << f(xx) << ’\n’; // writes 1

// f() changed the value of xx
cout << xx << ’\n’; // writes 1
int yy = 7;
cout << f(yy) << ’\n’; // writes 8

// f() changes the value of yy
cout << yy << ’\n’; // writes 8

}

0

0

a:

xx:

yy:

1st call (refer to xx)

2nd call (refer to yy)

28



Declarations and Definitions
Scopes
Functions
NamespacesFunctions

• Avoid (non-const) reference arguments when you can
They can lead to obscure bugs when you forget which arguments can be changed

int incr1(int a) { return a+1; }
void incr2(int& a) { ++a; }
int x = 7;
x = incr1(x); // pretty obvious
incr2(x); // pretty obscure

• So why have reference arguments?
• Occasionally, they are essential

E.g., for changing several values
For manipulating containers (e.g., vector)

• const reference arguments are very often useful

29



Declarations and Definitions
Scopes
Functions
NamespacesCall by Value / by Reference / by const-Reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main()
{

int x = 0;
int y = 0;
int z = 0;
g(x,y,z); // x==0; y==1; z==0
g(1,2,3); // error: reference argument r needs a variable to refer to
g(1,y,3); // ok: since cr is const we can pass ‘‘a temporary ’’

}

const references are very useful for passing large objects

30



Declarations and Definitions
Scopes
Functions
NamespacesReferences

• reference is a general concept
Not just for call-by-reference

int i = 7;
int& r = i;
r = 9; // i becomes 9
const int& cr = i;
// cr = 7; // error: cr refers to const
i = 8;
cout << cr << endl; // write out the value of i (that’s 8)

• You can
think of a reference as an alternative name for an object

• You can’t
modify an object through a const reference
make a reference refer to another object after initialization

7

r:

cr:

i:

31



Declarations and Definitions
Scopes
Functions
NamespacesExample

A range-for loop:

for (string s : v) cout << s << ’\n’; // s is a copy of some v[i]
for (string& s : v) cout << s << ’\n’; // no copy
for (const string& s : v) cout << s << ’\n’; // and we don’t modify v

32



Declarations and Definitions
Scopes
Functions
NamespacesCompile-time Functions

You can define functions that can be evaluated at compile time: constexpr functions

constexpr double xscale = 10; // scaling factors
constexpr double yscale = .8;

constexpr Point scale(Point p) { return {xscale*p.x,yscale*p.y}; };

constexpr Point x = scale ({123 ,456}); // evaluated at compile time

void use(Point p)
{

constexpr Point x1 = scale(p); // error: compile -time evaluation
// requested for variable argument

Point x2 = scale(p); // OK: run -time evaluation
}

Note: these functions must be very simple, just a return statement.

33



Declarations and Definitions
Scopes
Functions
NamespacesGuidance for Passing Variables

• Use call-by-value for very small objects

• Use call-by-const-reference for large objects

• Use call-by-reference only when you have to

• Return a result rather than modify an object through a reference argument

For example:

class Image { /* objects are potentially huge */ };
void f(Image i); ... f(my_image ); // oops: this could be s-l-o-o-o-w
void f(Image& i); ... f(my_image ); // no copy , but f() can modify my_image
void f(const Image &); ... f(my_image ); // f() won’t mess with my_image
Image make_image (); // most likely fast! (‘‘move semantics ’’ - later)

34



Declarations and Definitions
Scopes
Functions
NamespacesOutline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

35



Declarations and Definitions
Scopes
Functions
NamespacesNamespaces

Consider this code from two programmers Jack and Jill

class Glob { /*...*/ }; // in Jack’s header file jack.h
class Widget { /*...*/ }; // also in jack.h

class Blob { /*...*/ }; // in Jill’s header file jill.h
class Widget { /*...*/ }; // also in jill.h

#include "jack.h"; // this is in your code
#include "jill.h"; // so is this

void my_func(Widget p) // oops! - error: multiple definitions of Widget
{

// ...
}

36



Declarations and Definitions
Scopes
Functions
NamespacesNamespaces

• The compiler will not compile multiple definitions; such clashes can occur from multiple
headers.

• One way to prevent this problem is with namespaces:

namespace Jack { // in Jack’s header file
class Glob{ /*...*/ };
class Widget{ /*...*/ };

}

#include "jack.h"; // this is in your code
#include "jill.h"; // so is this

void my_func(Jack:: Widget p) // OK, Jack’s Widget class will not
{ // clash with a different Widget

// ...
}

37



Declarations and Definitions
Scopes
Functions
NamespacesNamespaces

• A namespace is a named scope

• The :: syntax is used to specify which namespace we are using and which (of many possible)
objects of the same name we are referring to

• For example, cout is in namespace std, we could write:

std::cout << "Please enter stuff ... \n";

38



Declarations and Definitions
Scopes
Functions
Namespacesusing Declarations and Directives

• To avoid the tedium of

std::cout << "Please enter stuff ... \n";

• you could write a using declaration

using std::cout; // when I say cout , I mean std::cout
cout << "Please enter stuff ... \n"; // ok: std::cout
cin >> x; // error: cin not in scope

• or you could write a using directive

using namespace std; // ‘‘make all names from namespace std available ’’
cout << "Please enter stuff ... \n"; // ok: std::cout
cin >> x; // ok: std::cin

• More about header files in chapter 12

39



Declarations and Definitions
Scopes
Functions
NamespacesSummary

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces

40


	Declarations and Definitions
	Scopes
	Functions
	Namespaces

