DM554/DM545/DM871 Linear and Integer Programming

Lecture 10 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Relaxations

Outline

1. Relaxations

Optimality and Relaxation

$$z=\max\{c(\mathbf{x}):\mathbf{x}\in X\subseteq\mathbb{Z}^n\}$$

How can we prove that x^* is optimal?

z is UB

 \underline{z} is LB

stop when $\overline{z} - \underline{z} \le \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a primal bound may be easy or hard to find, heuristics
- Dual bounds (here upper bounds): Relaxations

Optimality gap (SCIP):

- If primal and dual bound have opposite signs, the gap is "Infinity".
- If primal and dual bound have the same sign, the gap is

$$rac{|pb-db|}{\mathsf{min}(|pb|,|db|)}$$

decreases monotonously during the solving process.

Proposition

(RP)
$$z^R = \max\{f(\mathbf{x}) : \mathbf{x} \in T \subseteq \mathbb{R}^n\}$$
 is a relaxation of (IP) $z = \max\{c(\mathbf{x}) : \mathbf{x} \in X \subseteq \mathbb{R}^n\}$ if :

- (i) $X \subseteq T$ or
- (ii) $f(\mathbf{x}) \geq c(\mathbf{x}) \, \forall \mathbf{x} \in X$

In other terms:

$$\max_{\mathbf{x} \in T} f(\mathbf{x}) \ge \begin{Bmatrix} \max_{\mathbf{x} \in T} c(\mathbf{x}) \\ \max_{\mathbf{x} \in X} f(\mathbf{x}) \end{Bmatrix} \ge \max_{\mathbf{x} \in X} c(\mathbf{x})$$

- T: candidate solutions;
- $X \subseteq T$ feasible solutions;
- $f(\mathbf{x}) \geq c(\mathbf{x})$

Relaxations

Relaxations

How to construct relaxations?

```
1. IP : \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P \cap \mathbb{Z}^n\}, P = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}\}\
LP : \max\{\mathbf{c}^T\mathbf{x} : \mathbf{x} \in P\}
Better formulations give better bounds (P_1 \subseteq P_2)
```

Proposition

- (i) If a relaxation RP is infeasible, the original problem IP is infeasible.
- (ii) Let x^* be optimal solution for RP. If $x^* \in X$ and $f(x^*) = c(x^*)$ then x^* is optimal for IP.
- 2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree

3. Lagrangian relaxation

$$IP: z = \max\{\mathbf{c}^T\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in X \subseteq \mathbb{Z}^n\}$$

$$LR: z(\mathbf{u}) = \max\{\mathbf{c}^T\mathbf{x} + \mathbf{u}(\mathbf{b} - A\mathbf{x}) : \mathbf{x} \in X\}$$

$$z(\mathbf{u}) > z \forall \mathbf{u} > \mathbf{0}$$

4. Duality:

Definition

Two problems:

$$z = \max\{c(\mathbf{x}) : \mathbf{x} \in X\}$$
 $w = \min\{w(\mathbf{u}) : \mathbf{u} \in U\}$

form a weak-dual pair if $c(\mathbf{x}) \leq w(\mathbf{u})$ for all $\mathbf{x} \in X$ and all $\mathbf{u} \in U$. When z = w they form a strong-dual pair

В

Proposition

 $z = \max\{\mathbf{c}^T\mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}$ and $w^{LP} = \min\{\mathbf{u}^T\mathbf{b} : A^T\mathbf{u} \geq \mathbf{c}, \mathbf{u} \in \mathbb{R}_+^m\}$ (ie, dual of linear relaxation) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:

- (i) If D is unbounded, then IP is infeasible
- (ii) If $\mathbf{x}^* \in X$ and $\mathbf{u}^* \in U$ satisfy $c(\mathbf{x}^*) = w(\mathbf{u}^*)$ then \mathbf{x}^* is optimal for IP and \mathbf{u}^* is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

•

Examples

```
Weak pairs:
```

```
Matching: z = \max\{\mathbf{1}^T \mathbf{x} : A\mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_+^m\}
V. Covering: w = \min\{\mathbf{1}^T \mathbf{y} : A^T \mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_+^n\}
```

Proof: consider LP relaxations, then $z \le z^{LP} = w^{LP} \le w$. (strong when graphs are bipartite)

Weak pairs:

S. Packing: $z = \max\{\mathbf{1}^T \mathbf{x} : A\mathbf{x} \leq \mathbf{1}, \mathbf{x} \in \mathbb{Z}_+^n\}$ S. Covering: $w = \min\{\mathbf{1}^T \mathbf{y} : A^T \mathbf{y} \geq \mathbf{1}, \mathbf{y} \in \mathbb{Z}_+^m\}$