
DM545/DM871

Linear and Integer Programming

Lecture 5
Duality

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Derivation and Motivation
TheoryOutline

1. Derivation and Motivation

2. Theory

2



Derivation and Motivation
TheoryOutline

1. Derivation and Motivation

2. Theory

3



Derivation and Motivation
TheoryDual Problem

Dual variables y in one-to-one correspondence with the constraints:

Primal problem:

max z = cTx
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bTy
ATy ≥ c

y ≥ 0
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Derivation and Motivation
TheoryBounding approach

z∗ = max 4x1 + x2 + 3x3
x1 + 4x2 ≤ 1
3x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

a feasible solution is a lower bound but how good?
By tentatives:

(x1, x2, x3) = (1, 0, 0) z∗ ≥ 4
(x1, x2, x3) = (0, 0, 3) z∗ ≥ 9

What about upper bounds?

2 · ( x1 + 4x2 ) ≤ 2 · 1
+ 3 · ( 3x1 + x2 + x3) ≤ 3 · 3

4x1 + x2 + 3x3 ≤ 11x1 + 11x2 + 3x3 ≤ 11

cT x ≤ yTAx ≤ yTb

Hence z∗ ≤ 11. Is this the best upper bound we can find?
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Derivation and Motivation
Theory

multipliers y1, y2 ≥ 0 that preserve sign of inequality

y1 · ( x1 + 4x2 ) ≤ y1(1)
y2 · ( 3x1 + x2 + x3) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2

Coefficients

y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3

z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2 then to attain the best upper
bound:

min y1 + 3y2
y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0
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Derivation and Motivation
TheoryMultipliers Approach

π1
...
πm
πm+1


a11 a12 . . . a1n a1,n+1 a1,n+2 . . . a1,m+n 0 b1
...

. . .
am1 am2 . . . amn am,n+1 am,n+2 . . . am,m+n 0 bm
c1 c2 . . . cn 0 0 . . . 0 1 0


Working columnwise, since at optimum c̄k ≤ 0 for all k = 1, . . . , n + m:

π1a11 + π2a21 . . . + πmam1 + πm+1c1 ≤ 0
...

. . .
...

π1a1n + π2a2n . . . + πmamn + πm+1cn ≤ 0
π1a1,n+1, π2a2,n+1, . . . πmam,n+1 ≤ 0

...
...

...
...

...
...

π1a1,n+m, π2a2,n+m, . . . πmam,n+m ≤ 0
πm+1 = 1

π1b1 + π2b2 . . . + πmbm (≤ 0)

(since from the last row z = −πππb and we want to maximize z then we would min(−πππb) or
equivalently maxπππb)
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Theory

max π1b1 + π2b2 . . . + πmbm
π1a11 + π2a21 . . . + πmam1 ≤ −c1

...
. . .

...
π1a1n + π2a2n . . . + πmamn ≤ −cn

π1, π2, . . . πm ≤ 0

y = −π

max −y1b1 + −y2b2 . . . + −ymbm
−y1a11 + −y2a21 . . . + −ymam1 ≤ −c1

...
. . .

...
−y1a1n + −y2a2n . . . + −ymamn ≤ −cn

−y1,−y2, . . .− ym ≤ 0

min w = bT y
AT y ≥ c

y ≥ 0
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Derivation and Motivation
TheoryExample

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0



5π1 + 4π2 + 6π3 ≤ 0
10π1 + 4π2 + 8π3 ≤ 0
1π1 + 0π2 + 0π3 ≤ 0
0π1 + 1π2 + 0π3 ≤ 0
0π1 + 0π2 + 1π3 = 1
60π1 + 40π2

y1 = −π1 ≥ 0
y2 = −π2 ≥ 0

...
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TheoryDuality Recipe
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Derivation and Motivation
TheorySymmetry

The dual of the dual is the primal:
Primal problem:

max z = cT x
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bT y
AT y ≥ c

y ≥ 0

Let’s put the dual in the standard form
Dual problem:

min bT y ≡ −max−bT y
−AT y ≤ −c

y ≥ 0

Dual of Dual:

−min −cT x
−Ax ≥ −b

x ≥ 0
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Derivation and Motivation
TheoryWeak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{cTx | Ax ≤ b, x ≥ 0}
(D) min{bTy | ATy ≥ c, y ≥ 0}

for any feasible solution x of (P) and any feasible solution y of (D):

cTx ≤ bTy

Proof:
From (D) cj ≤

∑m
i=1 yiaij ∀j and from (P)

∑n
j=1 aijxi ≤ bi ∀i

From (D) yi ≥ 0 and from (P) xj ≥ 0

n∑
j=1

cjxj ≤
n∑

j=1

(
m∑
i=1

yiaij

)
xj =

m∑
i=1

 n∑
j=1

aijxi

 yi ≤
m∑
i=1

biyi
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Derivation and Motivation
TheoryStrong Duality Theorem

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)

Given:

(P) max{cT x | Ax ≤ b, x ≥ 0}
(D) min{bT y | AT y ≥ c , y ≥ 0}

exactly one of the following occurs:
1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution, then let an optimal be: x∗ = [x∗1 , . . . , x

∗
n ]

(D) has feasible solution, then let an optimal be: y∗ = [y∗
1 , . . . , y

∗
m], then:

cTx∗ = bTy∗
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Derivation and Motivation
Theory

Proof:

• all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D)
are ruled out by weak duality theorem.

• we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas
Lemma and convex polyhedral analysis)

• The last row of the final tableau will give us

z = z∗ +
n+m∑
k=1

c̄kxk = z∗ +
n∑

j=1

c̄jxj +
m∑
i=1

c̄n+ixn+i (*)

= z∗ + c̄BxB + c̄NxN

In addition, z∗ =
∑n

j=1 cjx
∗
j because optimal value

• We define y∗
i = −c̄n+i , i = 1, 2, . . . ,m

• We claim that (y∗
1 , y

∗
2 , . . . , y

∗
m) is a dual feasible solution satisfying cT x∗ = bT y∗.
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• Let’s verify the claim:
We substitute in (*): i) z =

∑n
j=1 cjxj ; ii) c̄n+i = −y∗

i ; and iii) xn+i = bi −
∑n

j=1 aijxj for
i = 1, 2, . . . ,m (n + i are the slack variables)

n∑
j=1

cjxj = z∗ +
n∑

j=1

c̄jxj −
m∑
i=1

y∗
i

bi −
n∑

j=1

aijxj


=

(
z∗ −

m∑
i=1

y∗
i bi

)
+

n∑
j=1

(
c̄j +

m∑
i=1

aijy
∗
i

)
xj

This must hold for every (x1, x2, . . . , xn) hence:

z∗ =
m∑
i=1

biy
∗
i =⇒ y∗ satisfies cT x∗ = bT y∗

cj = c̄j +
m∑
i=1

aijy
∗
i , j = 1, 2, . . . , n
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Since c̄k ≤ 0 for every k = 1, 2, . . . , n + m:

c̄j ≤ 0 cj −
m∑
i=1

y∗
i aij ≤ 0 

m∑
i=1

y∗
i aij ≥ cj j = 1, 2, . . . , n

c̄n+i ≤ 0 y∗
i = −c̄n+i ≥ 0, i = 1, 2, . . . ,m

=⇒ y∗ is also dual feasible solution
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Derivation and Motivation
TheoryComplementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x∗ for (P)
A feasible solution y∗ for (D)
Necessary and sufficient conditions for optimality of both:(

cj −
m∑
i=1

y∗
i aij

)
x∗j = 0, j = 1, . . . , n

If x∗j 6= 0 then
∑

y∗
i aij = cj (no surplus)

If
∑

y∗
i aij > cj then x∗j = 0

Proof:

z∗ = cTx∗ ≤ y∗Ax∗ ≤ bTy∗ = w∗

Hence from strong duality theorem:

cx∗ − y∗Ax∗ = 0

In scalars
n∑

j=1

(cj −
m∑
i=1

y∗
i aij︸ ︷︷ ︸

≤0

) x∗j︸︷︷︸
≥0

= 0

Hence each term must be = 0
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Proof in scalar form:

cjx
∗
j ≤

(
m∑
i=1

aijy
∗
i

)
x∗j j = 1, 2, . . . , n from feasibility in D

 n∑
j=1

aijx
∗
j

 y∗
i ≤ biy

∗
i i = 1, 2, . . . ,m from feasibility in P

Summing in j and in i :

n∑
j=1

cjx
∗
j ≤

n∑
j=1

(
m∑
i=1

aijy
∗
i

)
x∗j =

m∑
i=1

 n∑
j=1

aijx
∗
j

 y∗
i ≤

m∑
i=1

biy
∗
i

For the strong duality theorem the left hand side is equal to the right hand side and hence all
inequalities become equalities.

n∑
j=1

(cj −
m∑
i=1

y∗
i aij︸ ︷︷ ︸

≤0

) x∗j︸︷︷︸
≥0

= 0
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Derivation and Motivation
TheoryDuality - Summary

• Derivation:

• Economic interpretation

• Bounding Approach

• Multiplier Approach

• Recipe

• Lagrangian Multipliers Approach (next time)

• Theory:

• Symmetry

• Weak Duality Theorem

• Strong Duality Theorem

• Complementary Slackness Theorem
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