
DM545

Linear and Integer Programming

Intoduction to Python - Part 1

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on booklet Python Essentials]

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

2

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

3

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

4

BasicsSet Up

• Make sure you can execute your python scripts from a Unix shell.
• A shell is a user interface to access an operating system’s services. Commonly, it refers to a
command-line interface (CLI) as opposed to a graphic user interface (GUI). A Unix shell is a
command-line interpreter that provides a traditional Unix-like command line user interface. It
is available under these names/programs:

• Terminal (in linux)
• Terminal (in macos)
• Linux bash shell (in windows)
https://docs.microsoft.com/en-us/windows/wsl/install-win10

• The Command Prompt in Windows is a shell but based on DOS rather than Unix. If things do
not work as in a Linux bash shell, then install the Windows Subsystem for Linux (WSL) linked
above.

• In WSL your Windows file system is located at /mnt/c in the Bash shell environment. If you
want to use Windows tools to edit your files (for example with Notepad++ or atom), then you
must work in the Windows directories. From Windows your Linux files can be found as
described here.

• To access the machines of the Computer Lab remotedly, follow these instructions.
5

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://imada.sdu.dk/~marco/DM560/Assignments/notes/remote_access/remote_access.html

BasicsRunning Python — Scripts

A Python script

python_intro.py
"""This is the file header.
The header contains basic information about the file.
"""

if __name__ == "__main__":
print("Hello, world!\n") # indent with four spaces (not TAB)

• insert in a file with a text editor, for example, Atom, emacs, vim.

• execute from command prompt on Terminal on Linux or Mac and Command Prompt on
Windows

6

BasicsRunning Python — Interactively

Python:

$ python # Start the Python interpreter.
>>> print("This is plain Python.") # Execute some code.
This is plain Python.

IPython:

>>> exit() # Exit the Python interpreter.
$ ipython # Start IPython.

In [1]: print("This is IPython!") # Execute some code.
This is IPython!

In [2]: %run python_intro.py # Run a particular Python script.
Hello, world!

7

BasicsIPython
• Object introspection: quickly reveals all methods and attributes associated with an object.
• help() provides interactive help.

A list is a basic Python data structure. To see the methods associated with
a list, type the object name (list), followed by a period, and press tab.
In [1]: list. # Press 'tab'.

append() count() insert() remove()
clear() extend() mro() reverse()
copy() index() pop() sort()

To learn more about a specific method, use a '?' and hit 'Enter'.
In [1]: list.append?
Docstring: L.append(object) -> None -- append object to end
Type: method_descriptor

In [2]: help() # Start IPython's interactive help utility.
help> list # Get documentation on the list class.
Help on class list in module __builtin__:
...
<<help> quit # End the interactive help session.

8

BasicsResources

• Use IPython side-by-side with a text editor to test syntax and small code snippets quickly.

• Spyder3

• Consult the internet with questions; stackoverflow.com

• The official Python tutorial:
http://docs.python.org/3.6/tutorial/introduction.html

• PEP8 - Python style guide: http://www.python.org/dev/peps/pep-0008/

9

http://stackoverflow.com/
http://docs.python.org/3.6/tutorial/introduction.html
http://www.python.org/dev/peps/pep-0008/

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

10

BasicsArithmetics
• +, -, *, and / operators.
• ** exponentiation; % modular division.
• underscore character _ is a variable with the value of the previous command’s output

>>> 12 * 3
36
>>> _ / 4
9.0

• Data comparisons like < and > act as expected.
• == operator checks for numerical equality and the <= and >= operators correspond to ≤ and ≥
• Operators and, or, and not (no need for parenthesis)

>>> 3 > 2.99
True
>>> 1.0 <= 1 or 2 > 3
True
>>> 7 == 7 and not 4 < 4
True

11

BasicsVariables

Dynamically typed language: does not require to specify data type

>>> x = 12 # Initialize x with the integer 12.
>>> y = 2 * 6 # Initialize y with the integer 2*6 = 12.
>>> x == y # Compare the two variable values.
True

>>> x, y = 2, 4 # Give both x and y new values in one line.
>>> x == y
False

12

BasicsFunctions: Syntax

>>> def add(x, y):
... return x + y # Indent with four spaces.

• mixing tabs and spaces confuses the interpreter and causes problems.
• most text editors set the indentation type to spaces (soft tabs)

Functions are defined with parameters and called with arguments,

>>> def area(width, height): # Define the function.
... return width * height
...
>>> area(2, 5) # Call the function.
10

>>> def arithmetic(a, b):
... return a - b, a * b # Separate return values with commas.
...
>>> x, y = arithmetic(5, 2) # Unpack the returns into two variables.
>>> print(x, y)
3 10

13

BasicsFunctions: lambda

The keyword lambda is a shortcut for creating one-line functions.

Define the polynomials the usual way using 'def'.
>>> def g(x, y, z):
... return x + y**2 - z**3

Equivalently, define the polynomials quickly using 'lambda'.
>>> g = lambda x, y, z: x + y**2 - z**3

14

BasicsFunctions: Docstrings

>>> def add(x, y):
... """Return the sum of the two inputs."""
... return x + y

>>> def area(width, height):
... """Return the area of the rectangle with the specified width
... and height.
... """
... return width * height
...
>>> def arithmetic(a, b):
... """Return the difference and the product of the two inputs."""
... return a - b, a * b

15

BasicsFunctions: Returned Values

>>> def oops(i):
... """Increment i (but forget to return anything)."""
... print(i + 1)
...
>>> def increment(i):
... """Increment i."""
... return i + 1
...
>>> x = oops(1999) # x contains 'None' since oops()
2000 # doesn't have a return statement.
>>> y = increment(1999) # However, y contains a value.
>>> print(x, y)
None 2000

16

BasicsFunctions: Arguments
Arguments are passed to functions based on position or name
Positional arguments must be defined before named arguments.

Correctly define pad() with the named argument after positional arguments.
>>> def pad(a, b, c=0):
... """Print the arguments, plus an zero if c is not specified."""
... print(a, b, c)
Call pad() with 3 positional arguments.
>>> pad(2, 4, 6)
2 4 6
Call pad() with 3 named arguments. Note the change in order.
>>> pad(b=3, c=5, a=7)
7 3 5
Call pad() with 2 named arguments, excluding c.
>>> pad(b=1, a=2)
2 1 0
Call pad() with 1 positional argument and 2 named arguments.
>>> pad(1, c=2, b=3)
1 3 2

17

BasicsFunctions: Generalized Input

• *args is a list of the positional arguments
• **kwargs is a dictionary mapping the keywords to their argument.

>>> def report(*args, **kwargs):
... for i, arg in enumerate(args):
... print("Argument " + str(i) + ":", arg)
... for key in kwargs:
... print("Keyword", key, "-->", kwargs[key])
...
>>> report("TK", 421, exceptional=False, missing=True)
Argument 0: TK
Argument 1: 421
Keyword missing --> True
Keyword exceptional --> False

18

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

19

BasicsNumerical types

Python has four numerical data types: int, long, float, and complex.

>>> type(3) # Numbers without periods are integers.
int

>>> type(3.0) # Floats have periods (3. is also a float).
float

Division:

>>> 15 / 4 # Float division performs as expected. (but not←↩
in Py 2.7!)

3.75
>>> 15 // 4 # Integer division rounds the result down.
3
>>> 15. // 4
3.0

20

BasicsStrings

Strings are created with To concatenate two or more strings, use the + operator between string
variables or literals.

>>> str1 = "Hello" # either single or double quotes.
>>> str2 = 'world'
>>> my_string = str1 + " " + str2 + '!' # concatenation
>>> my_string
'Hello world!'

21

BasicsSlicing
• Strings are arrays of characters. Indexing begins at 0!
• Slicing syntax is [start:stop:step]. Defaults: [0:len():1].

>>> my_string = "Hello world!"
>>> my_string[4] # Indexing begins at 0.
'o'
>>> my_string[-1] # Negative indices count backward from the end.
'!'
Slice from the 0th to the 5th character (not including the 5th character).
>>> my_string[:5]
'Hello'
Slice from the 6th character to the end.
>>> my_string[6:]
'world!'
Slice from the 3rd to the 8th character (not including the 8th character).
>>> my_string[3:8]
'lo wo'
Get every other character in the string.
>>> my_string[::2]
'Hlowrd'

22

BasicsBuilt-in Types

The built-in data structures:

• tuple, list, set, dict

• collections module

• Various built in operations

These are always available:

• all versions of Python

• all operating systems

• all distributions of Python

• you do not need to install any package

Fast development:

• exploring ideas

• building prototypes

• solving one-off problems
If you need performance need to optimize or
change language

23

BasicsTuple

• aka, record, structure, a row in a database: ordered collection of elements
• packing and unpacking values.

Basic usage
record = (val1, val2, val3)
a, b, c = record
val = record[n]

>>> row = ("Mike", "John", "Mads")
>>> row[1]
"John"
>>> both = arithmetic(5,2) # or get them both as a ←↩

tuple.
>>> print(both)
(3, 10)

24

BasicsList

• Mutable sequence, array
• Enforcing order

Basic usage
items = [val1, val2, ..., ←↩

val3]
x = items[n]
items[n] = x
del items[n]
items.append(value)
items.sort()
items.insert(n, value)
items.remove(value)
items.pop()

>>> my_list = ["Hello", 93.8, "world", 10]
>>> my_list[0]
'Hello'
>>> my_list[-2]
'world'
>>> my_list[:2]
['Hello', 93.8]

25

BasicsList

>>> my_list = [1, 2] # Create a simple list of two integers.
>>> my_list.append(4) # Append the integer 4 to the end.
>>> my_list.insert(2, 3) # Insert 3 at location 2.
>>> my_list
[1, 2, 3, 4]
>>> my_list.remove(3) # Remove 3 from the list.
>>> my_list.pop() # Remove (and return) the last entry.
4
>>> my_list
[1, 2]

Slicing is also very useful for replacing values in a list.

>>> my_list = [10, 20, 30, 40, 50]
>>> my_list[0] = -1
>>> my_list[3:] = [8, 9]
>>> print(my_list)
[-1, 20, 30, 8, 9]

26

BasicsList

The in operator quickly checks if a given value is in a list (or another iterable, including strings).

>>> my_list = [1, 2, 3, 4, 5]
>>> 2 in my_list
True
>>> 6 in my_list
False
>>> 'a' in "xylophone" # 'in' also works on strings.
False

27

BasicsSet
• unordered sequence
• uniqueness, membership test

Basic usage
s = {val1, val2, ..., valn}
s.add(val)
s.remove(val)
s.discard(val)
val in s
s.union({val})
s.intersection({val})
s.difference({val})
s.symmetric_difference({val←↩

})

Initialize some sets. Repeats are not added.
>>> gym_members = {"John", "John", "Jane", "Bob"}
>>> print(gym_members)
{'John', 'Bob', 'Jane'}

>>> gym_members.add("Josh")
>>> gym_members.discard("John")
>>> print(gym_members)
{'Josh', 'Bob', 'Jane'}

>>> gym_members.intersection({"Josh", "Ian", "Jared"←↩
})

{'Josh'}
>>> gym_members.difference({"Bob", "Sarah"})
{'Josh', 'Jane'}

28

BasicsDict
• mapping, associative array
• unordered
• lookup table, indices, key values need to be immutable

Basic usage
d = { key1: val1, key2: val2,←↩

key3: val3 }
val = d[key]
d[key] = val
del d[key]
key in d
d.keys()
d.values()
d.pop(key)

>>> my_dictionary = {"business": 4121, "math": 2061,←↩
"visual arts": 7321}

>>> print(my_dictionary["math"])
2061

>>> my_dictionary["science"] = 6284
>>> my_dictionary.pop("business")
4121
>>> print(my_dictionary)
{'math': 2061, 'visual arts': 7321, 'science': 6284}

>>> my_dictionary.keys()
dict_keys(['math', 'visual arts', 'science'])
>>> my_dictionary.values()
dict_values([2061, 7321, 6284])

29

BasicsFurther Collections

>>> from collections import namedtuple
>>> Person = namedtuple('Person', ['first','last','address'])
>>> row = Person('Marco','Chiarandini','Campusvej')
>>> row.first
'Marco'

>>> from collections import Counter # histograms
>>> c = Counter('xyzzzy')
>>> c
Counter({'z': 2, 'x': 1, 'y': 1})

>>> from collections import defaultdict # multidict, one-many relationships
>>> d = defaultdict(list)
>>> d['spam'].append(42)
>>> d['blah'].append(13)
>>> d['spam'].append(10)
>>> d
{'blah': [42], 'spam': [13, 10]}

30

BasicsFurther Collections

>>> from collections import OrderedDict # remembers the order entries were added
>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}

>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])

>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])

>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

31

BasicsType Casting

Cast numerical values as different kinds of numerical values.
>>> x = int(3.0)
>>> y = float(3)

Cast a list as a set and vice versa.
>>> set([1, 2, 3, 4, 4])
{1, 2, 3, 4}
>>> list({'a', 'a', 'b', 'b', 'c'})
['a', 'c', 'b']

Cast other objects as strings.
>>> str(['a', str(1), 'b', float(2)])
"['a', '1', 'b', 2.0]"

32

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

33

BasicsThe If Statement

>>> food = "bagel"
>>> if food == "apple": # As with functions, the colon denotes
... print("72 calories") # the start of each code block.
... elif food == "banana" or food == "carrot":
... print("105 calories")
... else:
... print("calorie count unavailable")
...
calorie count unavailable

34

BasicsThe While Loop

>>> i = 0
>>> while True: # i < 10
... print(i, end=' ')
... i += 1
... if i >= 10:
... break # Exit the loop.
...
0 1 2 3 4 5 6 7 8 9

>>> i = 0
>>> while i < 10:
... i += 1
... if i % 3 == 0:
... continue # Skip multiples of 3.
... print(i, end=' ')
1 2 4 5 7 8 10

35

BasicsThe For Loop

• A for loop iterates over the items in any iterable.

• Iterables include (but are not limited to) strings, lists, sets, and dictionaries.

>>> colors = ["red", "green", "blue", "yellow"]
>>> for entry in colors:
... print(entry + "!")
...
red!
green!
blue!
yellow!

• The break and continue statements also work in for loops

• but a continue in a for loop will automatically increment the index or item

36

BasicsBuilt-in Functions

1. range(start, stop, step): Produces a sequence of integers, following slicing syntax.
2. zip(): Joins multiple sequences so they can be iterated over simultaneously.
3. enumerate(): Yields both a count and a value from the sequence. Typically used to get both

the index of an item and the actual item simultaneously.
4. reversed(): Reverses the order of the iteration.
5. sorted(): Returns a new list of sorted items that can then be used for iteration.

Iterate through the list in sorted (alphabetical) order.
>>> for item in sorted(colors):
... print(item, end=' ')
...
blue purple red white yellow

They (except for sorted()) are generators and return an iterator.
To put the items of the sequence in a collection, use list(), set(), or tuple().

37

BasicsList Comprehension

>>> loop_output = []
>>> for i in range(5):
... loop_output.append(i**2)
...
>>> list_output = [i**2 for i in range(5)]

[expression for x in iterable if conditions] # list
{ expression for x in iterable if conditions } # set
{ key: val for key, val in iterable if conditions } # dict

>>> colors = ["red", "blue", "yellow"]
>>> {"bright " + c for c in colors}
{'bright blue', 'bright red', 'bright yellow'}

>>> {c[0]:c for c in colors}
{'y': 'yellow', 'r': 'red', 'b': 'blue'}

38

BasicsGenerators

(expression for x in iterable if condition)

>>> nums = [1, 2, 3, 4, 5, 6]
>>> squares = (i*i for i in nums)
>>> squares
<generator object <genexpr> at 0x110468200>
>>> for n in squares:

print(n)
1
4
9
16
25
36

39

BasicsDecorators — Function Wrappers
>>> def typewriter(func):
... """Decorator for printing the type of output a function returns"""
... def wrapper(*args, **kwargs):
... output = func(*args, **kwargs) # Call the decorated function.
... print("output type:", type(output)) # Process before finishing.
... return output # Return the function output.
... return wrapper

>>> @typewriter
... def combine(a, b, c):
... return a*b // c

>>> combine = typewriter(combine)

Now calling combine() actually calls wrapper(), which then calls the original combine().

>>> combine(3, 4, 6)
output type: <class 'int'>
2
>>> combine(3.0, 4, 6)
output type: <class 'float'>
2.0

40

BasicsDecorators — Function Wrappers

>>> def repeat(times):
... """Decorator for calling a function several times."""
... def decorator(func):
... def wrapper(*args, **kwargs):
... for _ in range(times):
... output = func(*args, **kwargs)
... return output
... return wrapper
... return decorator
...
>>> @repeat(3)
... def hello_world():
... print("Hello, world!")
...
>>> hello_world()
Hello, world!
Hello, world!
Hello, world!

41

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

42

BasicsBuilt-in Functions

Common built-in functions for numerical calculations:

Function Returns
input Gets input from console
abs() The absolute value of a real number, or the magnitude

of a complex number.
min() The smallest element of a single iterable, or the smallest

of several arguments. Strings are compared based on
lexicographical order: numerical characters first, then
upper-case letters, then lower-case letters.

max() The largest element of a single iterable, or the largest
of several arguments.

len() The number of items of a sequence or collection.
round() A float rounded to a given precision in decimal digits.

sum() The sum of a sequence of numbers.

See https://docs.python.org/3/library/functions.html for more detailed documentation
on all of Python’s built-in functions.

43

https://docs.python.org/3/library/functions.html

BasicsBuilt-in Functions

Function Description
all() Return True if bool(entry) evaluates to True for every entry in

the input iterable.
any() Return True if bool(entry) evaluates to True for any entry in the

input iterable.
bool() Evaluate a single input object as True or False.
eval() Execute a string as Python code and return the output.
map() Apply a function to every item of the input iterable and return

an iterable of the results.
filter() Apply a filter to the elements of the input iterable and return

an set.

44

BasicsMutable vs Immutable Objects
• a mutable object can be changed after it is created, and an immutable object can’t.
• Objects of built-in types like (int, float, bool, str, tuple, unicode) are immutable
• Objects of built-in types like (list, set, dict) are mutable

>>> x = "Holberton"
>>> y = "Holberton"
>>> id(x)
140135852055856
>>> id(y)
140135852055856
>>> print(x is y) '''comparing the types'''
True

>>> a = 50
>>> type(a)
<class: 'int'>
>>> b = "Holberton"
>>> type(b)
<class: 'string'>

45

BasicsMutable vs Immutable Objects

>>> holy = {"moly": 1.99, "hand_grenade": 3, "grail": 1975.41}
>>> tax_prices = holy # Try to make a copy for processing.
>>> for item, price in tax_prices.items():
... # Add a 7 percent tax, rounded to the nearest cent.
... tax_prices[item] = round(1.07 * price, 2)
...
Now the base prices have been updated to the total price.
>>> print(tax_prices)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

However, dictionaries are mutable, so 'holy' and 'tax_prices' actually
refer to the same object. The original base prices have been lost.
>>> print(holy)
{'moly': 2.13, 'hand_grenade': 3.21, 'grail': 2113.69}

To avoid this problem, explicitly create a copy of the object by casting it as a new structure.

>>> tax_prices = dict(holy)

46

BasicsPass by-value or by-reference

• A pointer refers to a variable by storing the address in memory where the corresponding object
is stored.

• Python names are essentially pointers, and traditional pointer operations and cleanup are done
automatically.

• Python automatically deletes objects in memory that have no names assigned to them (no
pointers referring to them). This feature is called garbage collection.

• All objects that arguments of functions are passed by reference

47

BasicsModules
• A module is a Python file containing code that is meant to be used in some other setting
• All import statements should occur at the top of the file, below the header but before any
other code.

1. import <module> makes the specified module available under the alias of its own name.

>>> import math # The name 'math' now gives
>>> math.sqrt(2) # access to the math module.
1.4142135623730951

2. import <module> as <name> creates an alias for an imported module. The alias is added to the
current namespace, but the module name itself is not.

>>> import numpy as np # The name 'np' gives access to the numpy
>>> np.sqrt(2) # module, but the name 'numpy' does not.
1.4142135623730951
>>> numpy.sqrt(2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'numpy' is not defined

48

BasicsModules

3. from <module> import <object> loads the specified object into the namespace without loading
anything else in the module or the module name itself. This is used most often to access
specific functions from a module. The as statement can also be tacked on to create an alias.

>>> from random import randint # The name 'randint' gives access to the
>>> r = randint(0, 10000) # randint() function, but the rest of
>>> random.seed(r) # the random module is unavailable.
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'random' is not defined

49

BasicsRunning and Importing

example1.py

data = list(range(4))
def display():

print("Data:", data)

if __name__ == "__main__":
display()
print("This file was executed from the command line or an interpreter.")

else:
print("This file was imported.")

$ python example1.py
Data: [0, 1, 2, 3]
This file was executed from the command line or an interpreter.

50

BasicsThe Python Standard Library

Module Description
cmath Mathematical functions for complex numbers.
csv Comma Separated Value (CSV) file parsing and writing.

itertools Tools for iterating through sequences in useful ways.
math Standard mathematical functions and constants.
os Tools for interacting with the operating system.

random Random variable generators.
string Common string literals.
sys Tools for interacting with the interpreter.
time Time value generation and manipulation.

timeit Measuring execution time of small code snippets.

Explore the documentation in IPython

51

BasicsPython Packages

• A package is simply a folder that contains a file called __init__.py.

• This file is always executed first whenever the package is used.

• A package must also have a file called __main__.py in order to be executable.

• Executing the package will run __init__.py and then __main__.py

• Importing the package will only run __init__.py

• Use from <subpackage.module> import <object> to load a module within a subpackage.

• Once a name has been loaded into a package’s __init__.py, other files in the same package
can load the same name with from . import <object>.

To execute a package, run Python from the shell with the flag -m (for “module-name”) and exclude
the extension .py.

$ python -m package_name

See https://docs.python.org/3/tutorial/modules.html#packages for examples and more
details.

52

https://docs.python.org/3/tutorial/modules.html#packages

BasicsOutline

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

53

BasicsClasses

A class is a blueprint for an object that binds together specified variables and routines.

class Backpack:
"""A Backpack object class. Has a name and a list of contents.

Attributes:
name (str): the name of the backpack's owner.
contents (list): the contents of the backpack.

"""
def __init__(self, name): # This function is the constructor.

"""Set the name and initialize an empty list of contents.

Parameters:
name (str): the name of the backpack's owner.

"""
self.name = name # Initialize some attributes.
self.contents = []

54

BasicsInstantiation

Import the Backpack class and instantiate an object called 'my_backpack'.
>>> from object_oriented import Backpack
>>> my_backpack = Backpack("Fred")
>>> type(my_backpack)
<class 'object_oriented.Backpack'>

Access the object's attributes with a period and the attribute name.
>>> print(my_backpack.name, my_backpack.contents)
Fred []

The object's attributes can be modified after instantiation.
>>> my_backpack.name = "George"
>>> print(my_backpack.name, my_backpack.contents)
George []

55

BasicsMethods

class Backpack:
...
def put(self, item):

"""Add an item to the backpack's list of contents."""
self.contents.append(item) # Use 'self.contents', not just 'contents'.

def take(self, item):
"""Remove an item from the backpack's list of contents."""
self.contents.remove(item)

>>> my_backpack.put("notebook") # my_backpack is passed implicitly to
>>> my_backpack.put("pencils") # Backpack.put() as the first argument.
>>> my_backpack.contents
['notebook', 'pencils']

Remove an item from the backpack. # This is equivalent to
>>> my_backpack.take("pencils") # Backpack.take(my_backpack, "pencils")
>>> my_backpack.contents
['notebook']

56

BasicsInheritance

Superclass Subclass

class Knapsack(Backpack): # Inherit from the Backpack class in the class definition
"""Attributes:

name (str): the name of the knapsack's owner.
color (str): the color of the knapsack.
max_size (int): the maximum number of items that can fit inside.
contents (list): the contents of the backpack.
closed (bool): whether or not the knapsack is tied shut.

"""
def __init__(self, name, color, max_size=3):

"""Use the Backpack constructor to initialize the name, color,
and max_size attributes. A knapsack only holds 3 item by default.
"""
Backpack.__init__(self, name, color, max_size)
self.closed = True

57

BasicsInheritance

• all methods defined in the superclass class are available to instances of the subclass.
• methods from the superclass can be changed for the subclass by overridden
• New methods can be included normally.

>>> from object_oriented import Knapsack
>>> my_knapsack = Knapsack("Brady", "brown")

A Knapsack is a Backpack, but a Backpack is not a Knapsack.
>>> print(issubclass(Knapsack, Backpack), issubclass(Backpack, Knapsack))
True False
>>> isinstance(my_knapsack, Knapsack) and isinstance(my_knapsack, Backpack)
True

The Knapsack class has a weight() method, but the Backpack class does not.
>>> print(hasattr(my_knapsack, 'weight'), hasattr(my_backpack, 'weight'))
True False

58

BasicsMagic Methods
• special methods used to make an object behave like a built-in data type.
• begin and end with two underscores, like the constructor __init__().
• all variables and routines of a class are public
• magic methods are hidden

In [1]: %run object_oriented.py
In [2]: b = Backpack("Oscar", "green")
In [3]: b. # Press 'tab' to see standard methods and attributes.

color max_size take()
contents name
dump() put()

In [3]: b.__ # Press 'tab' to see magic methods and hidden attributes.
__getattribute__ __new__() __class__
__delattr__ __hash__ __reduce_ex__()
__dict__ __init__() __repr__
__dir__() __init_subclass__() __setattr__
__doc__ __sizeof__() __reduce__()
__str__ __format__() __module__
__subclasshook__() __weakref__

59

BasicsMagic Methods

Method Arithmetic Operator
__add__() +
__sub__() -
__mul__() *
__pow__() **

__truediv__() /
__floordiv__() //

Method Comparison Operator
__lt__() <
__le__() <=
__gt__() >
__ge__() >=
__eq__() ==
__ne__() !=

Operator overloading:

class Backpack:
def __add__(self, other):

return len(self.contents) + len(other.contents)

class Backpack(object)
def __lt__(self, other):

return len(self.contents) < len(other.contents)

60

BasicsStatic Attributes and Methods

Static attributes and methods are defined without self and can be accessed both with and without
instantiation

class Backpack:
...
brand = "Adidas" # Backpack.brand is a static attribute.

class Backpack:
...
@staticmethod
def origin(): # Do not use 'self' as a parameter.

print("Manufactured by " + Backpack.brand + ", inc.")

61

BasicsMore Magic Methods and Hashing

Method Operation Trigger Function
__bool__() Truth value bool()
__len__() Object length or size len()

__repr__() Object representation repr()
__getitem__() Indexing and slicing self[index]
__setitem__() Assignment via indexing self[index] = x

__iter__() Iteration over the object iter()
__reversed__() Reverse iteration over the object reversed()
__contains__() Membership testing in

A hash value is an integer that uniquely identifies an object.
If the __hash__() method is not defined, the default hash value is the object’s memory address
(accessible via the built-in function id()) divided by 16, rounded down to the nearest integer.

class Backpack:
def __hash__(self):

return hash(self.name) ^ hash(self.color) ^ hash(len(self.contents))

62

BasicsSummary

1. Basics
Installation
Basics
Data Structures
Control Flow Tools
Standard Library
Object Oriented Programming

63

	Basics
	Installation
	Basics
	Data Structures
	Control Flow Tools
	Standard Library
	Object Oriented Programming

