DM545/DM871 Linear and Integer Programming

Lecture 13 Branch and Bound

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Branch and Bound

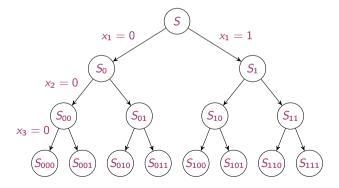
Outline

1. Branch and Bound

Branch and Bound

- Consider the problem $z = \max{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in S}$
- Divide and conquer: let $S = S_1 \cup ... \cup S_k$ be a decomposition of S into smaller sets, and let $z^k = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in S_k\}$ for k = 1, ..., K. Then $z = \max_k z^k$

For instance if $S \subseteq \{0, 1\}^3$ the enumeration tree is:

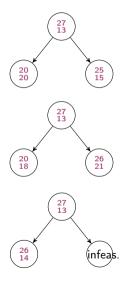


Bounding

Let's consider a maximization problem

- Let \overline{z}^k be an upper bound on z^k (dual bound)
- Let \underline{z}^k be a lower bound on z^k (primal bound)
- $(\underline{z}^k \leq z^k \leq \overline{z}^k)$
- $\underline{z} = \max_k \underline{z}^k$ is a lower bound on z
- $\overline{z} = \max_k \overline{z}^k$ is an upper bound on z

Pruning

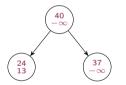


 $\overline{z} = 25$ $\underline{z} = 20$ pruned by optimality

 $\overline{z} = 26$ $\underline{z} = 21$ pruned by bounding

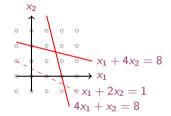
 $\overline{z} = 26$ $\underline{z} = 14$ pruned by infeasibility

Pruning



 $\overline{z} = 37$ $\underline{z} = 13$ nothing to prune

Example



• Solve LP

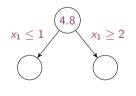
x1 x2 x3 x4 -z b
++++++
1 4 1 0 0 8
++++
x1 x2 x3 x4 -z b
++++++
I'=I-II' 0 15/4 1 -1/4 0 6
II'=1/4II 1 1/4 0 1/4 0 2
+++++++
III'=III-II' 0 7/4 0 -1/4 0 -2

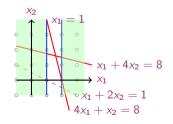
continuing

| x1 | x2 | x3 | x4 | -z | b T'=4/15T $1 \mid 4/15$ | -1/15 | $0 \mid 24/15$ 0 II'=II-1/4I' 0 | -1/15 | 4/15 0 1 24/15 TTT'=TTT-7/4T' 0 | -7/15 | -3/5 1 | -2-14/5 | 0

 $\begin{array}{l} x_2 = 1 + 3/5 = 1.6 \\ x_1 = 8/5 \\ \end{array}$ The optimal solution will not be more than 2 + 14/5 = 4.8

• Both variables are fractional, we pick one of the two:





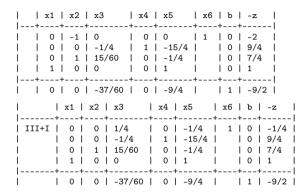
• Let's consider first the left branch:

always a b term negative after branching:

 $b_1 = \lfloor \overline{b}_3
floor$ $\overline{b}_1 = \lfloor \overline{b}_3
floor - b_3 < 0$

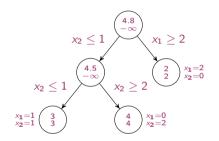
Dual simplex: $\min_{j} \{ |\frac{c_j}{a_{jj}}| : a_{ij} < 0 \}$ • Let's branch again

We have three open problems. Which one we choose next? Let's take A.



continuing we find:

 $x_1 = 0$ $x_2 = 2$ OPT = 4 The final tree:

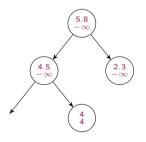


The optimal solution is 4.

Pruning

Pruning:

- 1. by optimality: $z^k = \max\{c^T x : x \in S^k\}$
- 2. by bound $\overline{z}^k \leq \underline{z}$ Example:



3. by infeasibility $S^k = \emptyset$

B&B Components

Bounding:

- 1. LP relaxation
- 2. Lagrangian relaxation
- 3. Combinatorial relaxation
- 4. Duality

Branching:

 $S_1 = S \cap \{x : x_j \le \lfloor \bar{x}_j \rfloor\}$ $S_2 = S \cap \{x : x_j \ge \lceil \bar{x}_j \rceil\}$

thus the current optimum is not feasible either in S_1 or in S_2 . Which variable to choose?

Which variable to choose?

Eg: Most fractional variable $\arg \max_{j \in C} \min\{f_j, 1 - f_j\}$

Choosing Node for Examination from the list of active (or open):

- Depth First Search (a good primal sol. is good for pruning + easier to reoptimize by just adding a new constraint)
- Best Bound First: (eg. largest upper: z̄^s = max_k z̄^k or largest lower to die fast)
- Mixed strategies

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

 $\underline{z} = \max{\{\underline{z}, 4\}}$

Store the active nodes: bounds + optimal basis (remember the revised simplex!)

Enhancements

- Preprocessor: constraint/problem/structure specific tightening bounds redundant constraints variable fixing: eg: max{ $\mathbf{c}^T \mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}$ } fix $x_j = l_j$ if $c_j < 0$ and $a_{ij} > 0$ for all i fix $x_j = u_j$ if $c_j > 0$ and $a_{ij} < 0$ for all i
- Priorities: establish the next variable to branch
- Special ordered sets SOS (or generalized upper bound GUB)

```
\sum_{j=1}^{k} x_j = 1 \qquad x_j \in \{0, 1\}
instead of: S_0 = S \cap \{\mathbf{x} : x_j = 0\} and S_1 = S \cap \{\mathbf{x} : x_j = 1\}
\{\mathbf{x} : x_j = 0\} leaves k - 1 possibilities
\{\mathbf{x} : x_j = 1\} leaves only 1 possibility
hence tree unbalanced
here: S_1 = S \cap \{\mathbf{x} : x_{j_i} = 0, i = 1..r\} and S_2 = S \cap \{\mathbf{x} : x_{j_i} = 0, i = r + 1, ..., k\},
r = \min\{t : \sum_{i=1}^{t} x_{i_i}^* \ge \frac{1}{2}\}
```

- Cutoff value: a user-defined primal bound to pass to the system.
- Simplex strategies: simplex is good for reoptimizing but for large models interior points methods may work best.
- Strong branching: extra work to decide more accurately on which variable to branch:
 - 1. choose a set C of fractional variables
 - 2. reoptimize for each of them (in case for limited iterations)
 - 3. $\overline{z}_i^{\downarrow}, \overline{z}_i^{\uparrow}$ (dual bound of down and up branch)

 $j^* = \arg\min_{j \in C} \max\{\overline{z}_j^{\downarrow}, \overline{z}_j^{\uparrow}\}$

ie, choose variable with largest decrease of dual bound, eg UB for max

There are four common reasons because integer programs can require a significant amount of solution time:

- 1. There is lack of node throughput due to troublesome linear programming node solves.
- 2. There is lack of progress in the best integer solution, i.e., the primal bound.
- 3. There is lack of progress in the best dual bound.
- 4. There is insufficient node throughput due to numerical instability in the problem data or excessive memory usage.

For 2) or 3) the gap best feasible-dual bound is large:

 $\mathsf{gap} = \frac{|\mathsf{Primal \ bound} - \mathsf{Dual \ bound}|}{\mathsf{Primal \ bound} + \epsilon} \cdot 100$

- heuristics for finding feasible solutions (generally NP-complete problem)
- find better lower bounds if they are weak: addition of cuts, stronger formulation, branch and cut
- Branch and cut: a B&B algorithm with cut generation at all nodes of the tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally

Store for active node: bounds, basis, pointers to constraints in the cut pool that apply at the node

Relative Optimality Gap

In CPLEX:

 $\mathsf{gap} = \frac{|\mathsf{best} \mathsf{ dual} \mathsf{ bound} - \mathsf{best} \mathsf{ integer}|}{|\mathsf{best} \mathsf{ integer} + 10^{-11}|}$

In SCIP and MIPLIB standard:

 $gap = \frac{pb - db}{\inf\{|z|, z \in [db, pb]\}} \cdot 100$ for a minimization problem

(if $pb \ge 0$ and $db \ge 0$ then $\frac{pb-db}{db}$) if db = pb = 0 then gap = 0 if no feasible sol found or $db \le 0 \le pb$ then the gap is not computed. Last standard avoids problem of non decreasing gap if we go through zero

3186	5 2520	-666.6217	4096	956.6330	-667.2010	1313338	169.74%
3226	3 2560	-666.6205	4097	956.6330	-667.2010	1323797	169.74%
3266	3 2600	-666.6201	4095	956.6330	-667.2010	1335602	169.74%
Elapsed	l real time	= 2801.61	sec. ((tree size = 77.54	MB, soluti	ons = 2)	
* 3324	l+ 2656			-125.5775	-667.2010	1363079	431.31%
3334	2668	-666.5811	4052	-125.5775	-667.2010	1370748	431.31%
3380) 2714	-666.5799	4017	-125.5775	-667.2010	1388391	431.31%
3422	2 2756	-666.5791	4011	-125.5775	-667.2010	1403440	431.31%

Advanced Techniques

We did not treat:

- LP: Dantzig Wolfe decomposition
- LP: Column generation
- LP: Delayed column generation
- IP: Branch and Price
- LP: Benders decompositions
- LP: Lagrangian relaxation

1. Branch and Bound