DM545/DM871 Linear and Integer Programming

> Lecture Cutting Planes

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Cutting Plane Algorithms

Outline

1. Cutting Plane Algorithms

Valid Inequalities

- IP: $z = \max{\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in X\}, X = {\{\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{Z}_+^n\}}$
- Proposition: $conv(X) = \{ \mathbf{x} : \tilde{A}\mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq 0 \}$ is a polyhedron
- LP: $z = \max{\{\mathbf{c}^T \mathbf{x} : \tilde{A} \mathbf{x} \leq \tilde{\mathbf{b}}, \mathbf{x} \geq \mathbf{0}\}}$ would be the best formulation
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

 $\mathbf{ax} \leq \mathbf{b}$ is a valid inequality for $X \subseteq \mathbb{R}^n$ if $\mathbf{ax} \leq \mathbf{b} \ \forall \mathbf{x} \in X$

Which are useful inequalities? and how can we find them? How can we use them?

Example: Pre-processing

• $X = \{(x, y) : x \le 999y; 0 \le x \le 5, y \in \mathbb{B}^1\}$

 $x \le 5y$

• $X = \{x \in \mathbb{Z}_+^n : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{13}{11}x_1 + \frac{20}{11}x_2 + x_3 + \frac{6}{11}x_4 \ge \frac{72}{11} = 6 + \frac{6}{11}$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

• Capacitated facility location:

 $\sum_{i \in M} x_{ij} \leq b_j y_j \quad \forall j \in N$ $\sum_{j \in N} x_{ij} = a_i \quad \forall i \in M$ $x_{ij} \geq 0, \quad y_j \in B^n$ $x_{ij} \leq \min\{a_i, b_j\} y_j$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}_+^n$, $P = \{ \mathbf{x} \in \mathbb{R}_+^n : A\mathbf{x} \le \mathbf{b} \}$, $A \in \mathbb{R}^{m \times n}$
- $\mathbf{u} \in \mathbb{R}^m_+$, $\{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n\}$ columns of A

CG procedure to construct valid inequalities

1) $\sum_{j=1}^{n} \mathbf{u} \mathbf{a}_{j} x_{j} \leq \mathbf{u} \mathbf{b}$ valid: $\mathbf{u} \geq \mathbf{0}$ 2) $\sum_{j=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \mathbf{u} \mathbf{b}$ valid: $\mathbf{x} \geq \mathbf{0}$ and $\sum \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \sum \mathbf{u} \mathbf{a}_{j} x_{j}$ 3) $\sum_{j=1}^{n} \lfloor \mathbf{u} \mathbf{a}_{j} \rfloor x_{j} \leq \lfloor \mathbf{u} \mathbf{b} \rfloor$ valid for X since $\mathbf{x} \in \mathbb{Z}^{n}$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}^n_+$
- a family of valid inequalities $\mathcal{F} : \mathbf{a}^T \mathbf{x} \leq b, (\mathbf{a}, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

Init.: $t = 0, P^0 = P$ Iter. t: Solve $\overline{z}^t = \max\{\mathbf{c}^T \mathbf{x} : \mathbf{x} \in P^t\}$ let \mathbf{x}^t be an optimal solution if $\mathbf{x}^t \in \mathbb{Z}^n$ stop, \mathbf{x}^t is opt to the IP if $\mathbf{x}^t \notin \mathbb{Z}^n$ solve separation problem for \mathbf{x}^t and \mathcal{F} if (\mathbf{a}^t, b^t) is found with $\mathbf{a}^t \mathbf{x}^t > b^t$ that cuts off x^t

 $P^{t+1} = P \cap \{\mathbf{x} : \mathbf{a}^i \mathbf{x} \le b^i, i = 1, \dots, t\}$

else stop (P^t is in any case an improved formulation)

Gomory's fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts

- max{ $\mathbf{c}^T \mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0, \mathbf{x} \in \mathbb{Z}^n$ }
- Solve LPR to optimality

$$\begin{bmatrix} I & \bar{A}_N = A_B^{-1}A_N & 0 & \bar{b} \\ -\bar{c}_B & \bar{c}_N (\leq 0) & 1 & -d \end{bmatrix}$$

$$\begin{aligned} x_{B_u} &= \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j, \quad u = 1..m \\ z &= \bar{d} + \sum_{j \in N} \bar{c}_j x_j \end{aligned}$$

 If basic optimal solution to LPR is not integer then ∃ some row u: b
_u ∉ Z¹. The Chvatál-Gomory cut applied to this row is:

$$x_{B_u} + \sum_{j \in N} \lfloor \bar{a}_{uj} \rfloor x_j \le \lfloor \bar{b}_u \rfloor$$

 $(B_u$ is the index in the basis *B* corresponding to the row *u*)

(cntd)

• Eliminating $x_{B_u} = \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j$ in the CG cut we obtain:

$$-\sum_{j\in \mathsf{N}}(\underbrace{\bar{a}_{uj}-\lfloor\bar{a}_{uj}\rfloor}_{0\leq f_{uj}<1})x_j\geq \underbrace{\bar{b}_u-\lfloor\bar{b}_u\rfloor}_{0< f_u<1}$$

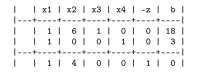
$$\sum_{j\in N} f_{uj} x_j \ge f_u$$

 $f_u > 0$ or else u would not be row of fractional solution. It implies that x^* in which $x_N^* = 0$ is cut out!

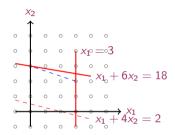
(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

 $\begin{array}{l} \max x_{1} + 4x_{2} \\ x_{1} + 6x_{2} \leq 18 \\ x_{1} \qquad \leq 3 \\ x_{1}, x_{2} \geq 0 \\ x_{1}, x_{2} \text{ integer} \end{array}$



		x1	Ι	x2	Ι	xЗ	Ι	x4	Ι	$-\mathbf{Z}$	Ι	ь	L
+++++													
1	1	0	Ι	1	Τ	1/6	Τ	-1/6	Ι	0	Ι	15/6	Т
1	1	1	Ι	0	T	0	Τ	1	Ι	0	Τ	3	Т
++++													
I.	Т	0	Т	0	Т	-2/3	Т	-1/3	Т	1	Τ	-13	L



 $x_2 = 5/2, x_1 = 3$ Optimum, not integer

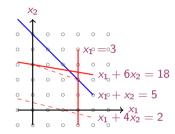
- We take the first row: | | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
- CG cut $\sum_{j \in N} f_{uj} x_j \ge f_u \rightsquigarrow \frac{1}{6} x_3 + \frac{5}{6} x_4 \ge \frac{1}{2}$
- Let's see that it leaves out x*: from the CG proof:

 $\frac{1/6 (x_1 + 6x_2 \le 18)}{5/6 (x_1 \le 3)}$ $\frac{5/6 (x_1 \le 3)}{x_1 + x_2 \le 3 + 5/2 = 5.5}$ since x_1, x_2 are integer $x_1 + x_2 \le 5$

• Let's see how it looks in the space of the original variables: from the first tableau:

$$\begin{aligned} x_3 &= 18 - 6x_2 - x_1 \\ x_4 &= 3 - x_1 \\ \frac{1}{6}(18 - 6x_2 - x_1) + \frac{5}{6}(3 - x_1) \geq \frac{1}{2} \qquad \rightsquigarrow \qquad x_1 + x_2 \leq 5 \end{aligned}$$

• Graphically:



• Let's continue:

Ι	Τ	x1	Ι	x2	T	xЗ	Ι	x4	Ι	x5	Ι	-z	T	Ъ	L
	-+-		.+.		-+-		.+.		.+.		-+-		-+-		· _
I.	Τ	0	T	0	Т	-1/6	Ι	-5/6	Ι	1	Ι	0	Т	-1/2	1
I.	Ι	0	Ι	1	T	1/6	Ι	-1/6	Ι	0	Τ	0	Τ	5/2	1
Ι	Τ	1	Ι	0	Ι	0	Ι	1	Ι	0	Т	0	Ι	3	I.
++++++++															
I.	Т	0	I	0	I	-2/3	I	-1/3	I	0	Ι	1	I	-13	L

We need to apply dual-simplex (will always be the case, why?)

ratio rule: $\min\{|\frac{c_j}{a_{ij}}| : a_{ij} < 0\}$

• After the dual simplex iteration:

| x1 | x2 x3 | x4 | x5 -z | b -6/53/5 1/50 13/5 -1/5-1/512/56/5-3/5 I 0 | -2/5 | -64/5 0 0 L 1 |

• In the space of the original variables:

$$\begin{array}{l} 4(18-x_1-6x_2)+(5-x_1-x_2)\geq 2\\ x_1+5x_2\leq 15 \end{array}$$

We can choose any of the three rows.

Let's take the third: CG cut: $\frac{4}{5}x_3 + \frac{1}{5}x_5 \ge \frac{2}{5}$

